
StarOfficeTM 7 Office Suite
A SunTM ONE Software Offering

Basic  Programmer's  Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A. 650-960-1300

Part No. 817-1826-10

July  2003, Revision  B



Copyrights and Trademarks
Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054. , U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without

limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or

pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the

product or of this document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.  

This product is based in part on the work of the Independent JPEG Group and The FreeType Project.   

Portions Copyright 2000 SuSE, Inc.  Word for Word Copyright © 1996 Inso Corp. International CorrectSpell spelling correction system Copyright © 1995 by Lernout &

Hauspie Speech Products N.V. All rights reserved.

Sun,  Sun Microsystems,  the Sun logo,  Java,  Solaris,  StarOffice, the Butterfly logo,  the Solaris logo, and the StarOffice logo are trademarks or registered trademarks of

Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.  Screen Beans and Screen Beans clipart

characters are registered trademarks of A Bit Better Corporation.  

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE

EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et sans la limitation, ces droits de

propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les

applications de brevet en attente dans les Etats - Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses

bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Ce produit repose en partie sur le travail de l’Independent JPEG Group et de The FreeType Project.    

Portions Copyright 2000 SuSE, Inc.  Word for Word Copyright © 1996 Inso Corp. Système de correction orthographique International CorrectSpell Copyright © 1995 de

Lernout & Hauspie Speech Products N.V. Tous droits réservés.  

Sun,  Sun Microsystems,  le logo Sun,  Java,  Solaris,  StarOffice,  le logo Butterfly,  le logo Solaris et  le logo StarOffice sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les Screen Beans et les objets graphiques prédessinés Screen Beans sont des marques déposées de A Bit Better Corporation.

Acquisitions fédérales : logiciel commercial ; les utilisateurs gouvernementaux sont soumis aux conditions générales standard de la licence.  

LA DOCUMENTATION est fournie « TELLE QUELLE » et TOUTES LES CONDITIONS, REPRÉSENTATIONS ET GARANTIES EXPRESSES OU TACITES, Y COMPRIS

TOUTE GARANTIE TACITE CONCERNANT LA QUALITÉ MARCHANDE, L'APTITUDE À UN USAGE PARTICULIER OU LA NON-VIOLATION DE DROITS DE

TIERS SERONT REJETÉES, EXCEPTÉ DANS LE CAS OÙ L'EXCLUSION OU LA LIMITATION DE TELLES GARANTIES NE SERAIT PAS AUTORISÉE PAR LA

LÉGISLATION EN VIGUEUR.  



Contents

1  Introduction    11

About StarOffice Basic    11

Intended Users of StarOffice Basic    12

Use of StarOffice Basic    12

Structure of This Guide    13

More Information    13

2  The Language of StarOffice Basic    15

An Overview of a StarOffice Basic Program    15

Program Lines    16

Comments    16

Markers    17

Working With Variables    18

Implicit Variable Declaration    18

Explicit Variable Declaration    18

Strings    20

From a Set of ASCII Characters to Unicode    20

String Variables    21

Specification of Explicit Strings    22

Numbers    22

Integer Variables    22

Long Integer Variables    23

   3



Single Variables    23

Double Variables    23

Currency Variables    24

Specification of Explicit Numbers    24

True and False    27

Boolean Variables    27

Date and Time Details    28

Date Variables    28

Data Fields    28

Simple Arrays    28

Specified Value for Start Index    29

Multi-Dimensional Data Fields    30

Dynamic Changes in the Dimensions of Data Fields    30

Scope and Life Span of Variables    32

Local Variables    32

Public Domain Variables    33

Global Variables    33

Private Variables    34

Constants    35

Operators    35

Mathematical Operators    35

Logical Operators    35

Comparison Operators    36

Branching    36

If...Then...Else    36

Select...Case    37

Loops    39

For...Next    39

Do...Loop    40

Programming Example: Sorting With Embedded Loops    42

Procedures and Functions    43

4 OpenOffice.org  Basic  Programmer's  Guide



Procedures    43

Functions    43

Terminating Procedures and Functions Prematurely    44

Passing Parameters    45

Optional Parameters    46

Recursion    47

Error Handling    48

The On Error Instruction    48

The Resume Command    49

Queries Regarding Error Information    50

Tips for Structured Error Handling    50

3  The Runtime Library of StarOffice Basic    53

Conversion Functions    53

Implicit and Explicit Type Conversions    53

Checking the Content of Variables    56

Strings    58

Working with Sets of Characters    58

Accessing Parts of a String    58

Search and Replace    59

Formatting Strings    61

Date and Time    62

Specification of Date and Time Details within the Program Code    62

Extracting Date and Time Details    63

Retrieving System Date and Time    65

Files and directories    65

Administering Files    65

Writing and Reading Text Files    70

Message and Input Boxes    73

Displaying Messages    73

Input Box For Querying Simple Strings    75

Contents  5



Other functions    75

Beep    75

Shell    75

Wait    76

Environ    76

4  Introduction to the StarOffice API    77

Universal Network Objects (UNO)    77

Properties and Methods    79

Properties    79

Methods    80

Modules, Services and Interfaces    80

Tools for Working with UNO    81

The supportsService Method    81

Debug Properties    81

API Reference    82

An Overview of a Few Central Interfaces    82

Creating Context-Dependent Objects    83

Named Access to Subordinate Objects    84

Index-Based Access to Subordinate Objects    86

Iterative Access to Subordinate Objects    87

5  Working with StarOffice Documents    89

The StarDesktop    89

Basic Information about Documents in StarOffice    90

Creating, Opening and Importing Documents    92

Document Objects    95

Templates    100

Details about various formatting options    101

6  Text Documents    103

The Structure of Text Documents    104

6 OpenOffice.org  Basic  Programmer's  Guide



Paragraphs and Paragraph Portions    104

Editing Text Documents    114

The TextCursor    114

Searching for Text Portions    120

Replacing Text Portions    123

Text Documents: More than Just Text    125

Tables    126

Text Frames    132

Text Fields    135

Bookmarks    139

7  Spreadsheet Documents    141

The Structure of Table-Based Documents (Spreadsheets)    141

Spreadsheets    142

Rows and Columns    143

Cells    146

Formatting    152

Editing Spreadsheet Documents Efficiently    165

Cell Ranges    165

Searching and Replacing Cell Contents    168

8  Drawings and Presentations    169

The Structure of Drawings    169

Pages    169

Elementary Properties of Drawing Objects    171

An Overview of Various Drawing Objects    184

Editing Drawing Objects    191

Grouping Objects    191

Rotating and Shearing Drawing Objects    193

Searching and Replacing    194

Presentations    195

Working With Presentations    195

Contents  7



9  Diagrams (Charts)    197

Using Diagrams in Spreadsheets    197

The Structure of Diagrams    199

The Individual Elements of a Diagram    199

Example    206

3D Diagrams    207

Stacked Diagrams    207

Diagram Types    208

Line Diagrams    208

Area Diagrams    208

Bar Diagrams    209

Pie Diagrams    209

10  Database Access    211

SQL: a Query Language    212

Types of Database Access    212

Data Sources    213

Queries    215

Links with Database Forms    216

Database Access    217

Iteration of Tables    218

Type-Specific Methods for Retrieving Values    219

The ResultSet Variants    220

Methods for Navigation in ResultSets    221

Modifying Data Records    222

11  Dialogs    223

Working With Dialogs    223

Creating Dialogs    223

Closing Dialogs    226

Access to Individual Control Elements    227

Working With the Model of Dialogs and Control Elements    227

8 OpenOffice.org  Basic  Programmer's  Guide



Properties    228

Name and Title    228

Position and Size    228

Focus and Tabulator Sequence    229

Multi-Page Dialogs    229

Events    232

Parameters    235

Mouse Events    235

Keyboard Events    237

Focus Events    238

Control Element-Specific Events    239

Dialog Control Elements in Detail    239

Buttons    240

Option Buttons    241

Checkboxes    242

Text Fields    243

List Boxes    244

12  Forms    247

Working with Forms    247

Determining Object Forms    248

The Three Aspects of a Control Element Form    249

Accessing the Model of Control Element Forms    249

Accessing the View of Control Element Forms    250

Accessing the Shape Object of Control Element Forms    251

Control Element Forms in Detail    252

Buttons    253

Option Buttons    254

Checkboxes    255

Text Fields    256

List Boxes    257

Contents  9



Database Forms    258

Tables    259

13  Appendix    261

VBA Migrations Tips    261

StarOffice 5.x Migration Tips    262

10 OpenOffice.org  Basic  Programmer's  Guide



1 Introduction
This guide provides an introduction to programming with StarOffice 7 Basic and
indicates the possible applications provided by using StarOffice Basic in
StarOffice. To get the most out of this book, you should be familiar with other
programming languages.

 Extensive examples are provided to help you quickly develop your own
StarOffice Basic programs.

A number  of migration  tips  for  Microsoft  Visual  Basic  programmers  or those who
have worked with  earlier  versions  of StarOffice Basic  are provided  throughout  the
guide. These are indicated  by a small  symbol  at the edge of the page. The
Appendix  of this  guide contains  an index of all  of the migration  tips  so that you
can quickly  navigate to the tip  that  you want to read.

About StarOffice Basic
The StarOffice Basic programming language has been developed especially for
StarOffice and is firmly integrated in the Office package.

As the name suggests, StarOffice Basic is a programming language from the Basic
family. Anyone who has previously worked with other Basic languages – in
particular with Visual Basic or Visual Basic for Applications (VBA) from Microsoft
– will quickly become accustomed to StarOffice Basic. Large sections of the basic
constructs of StarOffice Basic are compatible with Visual Basic.

The StarOffice Basic programming language can be divided into four components:

 The language of StarOffice Basic: Defines the elementary linguistic constructs,
for example, for variable declarations, loops, and functions.

11

CHAPTER  1



 The runtime library: Provides standard functions which have no direct reference
to StarOffice, for example, functions for editing numbers, strings, date values,
and files.

 The StarOffice API (Application programming Interface): Permits access to
StarOffice documents and allows these to be created, saved, modified, and
printed.

 The Dialog Editor: Creates personal dialog windows and provides scope for
the adding of control elements and event handlers.

Compatibility  between StarOffice Basic  and VBA relates to the StarOffice Basic
language as well  as the runtime library.  The StarOffice API and the Dialog Editor
are not  compatible  with  VBA (standardizing  these interfaces  would  have made
many of the concepts  provided  in StarOffice impossible).

Intended Users of StarOffice Basic
The scope of application for StarOffice Basic begins where the standard functions
of StarOffice end. Routine tasks can therefore be automated in StarOffice Basic,
links can be made to other programs – for example to a database server – and
complex activities can be performed at the press of a button using predefined
scripts.

StarOffice Basic offers complete access to all StarOffice functions, supports all
functions, modifies document types, and provides options for creating personal
dialog windows.

Use of StarOffice Basic
StarOffice Basic can be used by any StarOffice user without any additional
programs or aids. 
Even in the standard installation, StarOffice Basic has all the components needed
to create its own Basic macros, including:

 The integrated development environment (IDE) which provides an editor for
creating and testing macros.

 The interpreter which is needed to run StarOffice Basic macros.

12   OpenOffice.org  Basic  Programmer's  Guide



 The interfaces to various StarOffice applications, which allow for direct access
to Office documents.

Structure of This Guide
The first three chapters introduce readers to StarOffice Basic: 

 Chapter 2: The Language of StarOffice Basic 

 Chapter 3: The Runtime Library of StarOffice Basic

 Chapter 4: Introduction to the StarOffice API

These chapters provide an overview of StarOffice Basic and should be  read by
anyone who intends to write StarOffice Basic programs.

The remaining chapters describe the individual components of the StarOffice API
in more detail and can be read selectively as required:

 Chapter 5: Working with StarOffice Documents

 Chapter 6: Text Documents

 Chapter 7: Spreadsheet Documents 

 Chapter 8: Drawings and Presentations

 Chapter 9: Diagrams (Charts)

 Chapter 10: Database Access

 Chapter 11: Dialogs

 Chapter 12: Forms

More Information
The components of the StarOffice API that are discussed in this guide were
selected based on their practical benefits for the StarOffice Basic programmer. In
general, only parts of the interfaces are discussed. For a more detailed picture, see
the API reference which is available on the Internet at:

http://api.openoffice.org/common/ref/com/sun/star/module-ix.html

Chapter 1   Introduction   13



The Developer's Guide describes the StarOffice API in more detail than this guide,
but is primarily intended for Java and C++ programmers. Anyone who is already
familiar with StarOffice Basic programming can find additional information in the
Developer's Guide on StarOffice Basic and StarOffice programming. You can
download the Developer's Guide on the Internet from:

http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html

Programmers who want to work directly with Java or C++ rather than StarOffice
Basic should consult the StarOffice Developer's Guide instead of this guide.
StarOffice programming with Java or C++ is a considerably more complex process
than programming with StarOffice Basic.

14   OpenOffice.org  Basic  Programmer's  Guide



2 The Language of StarOffice Basic
StarOffice Basic belongs to the family of Basic languages. Many parts of StarOffice
Basic are identical to Microsoft Visual Basic for Applications and Microsoft Visual
Basic. Anyone who has already worked with these languages can quickly become
accustomed to StarOffice Basic.

Programmers of other languages – such as Java, C++, or Delphi – should also find
it easy to familiarize themselves with StarOffice Basic. StarOffice Basic is a fully-
developed procedural programming language and no longer uses rudimentary
control structures, such as GoTo and GoSub.

You can also benefit from the advantages of object-oriented programming since an
interface in StarOffice Basic enables you to use external object libraries. The entire
StarOffice API is based on these interfaces, which are described in more detail in
the following chapters of this document.

This chapter provides an overview of the key elements and constructs of the
StarOffice Basic language, as well as the framework in which applications and
libraries are oriented to StarOffice Basic.

An Overview of a StarOffice Basic
Program
StarOffice Basic is an interpreter language. Unlike C++ or Turbo Pascal, the
StarOffice compiler does not create executable or self-extracting files that are
capable of running automatically. Instead, you can execute a StarOffice Basic
program by pressing a button. The code is first checked for obvious errors and
then executed line by line.

15

CHAPTER  2



Program Lines
The Basic interpreter's line-oriented execution produces one of the key differences
between Basic and other programming languages. Whereas the position of hard
line breaks in the source code of Java, C++, or Delphi programs is irrelevant, each
line in a Basic program forms a self-contained unit. Function calls, mathematical
expressions, and other linguistic elements, such as function and loop headers,
must be completed on the same line that they begin on.

If there is not enough space, or if this results in long lines, then several lines can be
linked together by adding underscores _. The following example shows how four
lines of a mathematical expression can be linked:

LongExpression = (Expression1 * Expression2) + _

(Expression3 * Expression4) + _ 

(Expression5 * Expression6) + _

(Expression7 * Expression8)

The underscore must always be the last character in a linked line and cannot be
followed by a space or a tab, otherwise the code generates an error.

In addition to linking individual lines, StarOffice Basic, you can use colons to
divide one line into several sections so that there is enough space for several
expressions. The assignments

a = 1

a = a + 1

a = a + 1 

can be written as follows:

a = 1  :  a = a + 1  :  a = a + 1

Comments
In addition to the program code to be executed, a StarOffice Basic program can
also contain comments that explain the individual parts of the program and
provide important information that can be helpful at a later point.

16   OpenOffice.org  Basic  Programmer's  Guide



StarOffice Basic provides two methods for inserting comments in the program
code:

 All characters that follow an apostrophe are treated as comments:

Dim A ' This is a comment for variable A

 The keyword Rem, followed by the comment:

Rem This comment is introduced by the keyword Rem. 

A comment usually includes all characters up to the end of the line. StarOffice
Basic then interprets the following line as a regular instruction again. If comments
cover several lines, each line must be identified as a comment:

Dim B ' This comment for variable B is relatively long 

' and stretches over several lines. The

' comment character must therefore be repeated 

' in each line.

Markers
A StarOffice Basic program can contain dozens, hundreds, or even thousands of
markers, which are names for variables, constants, functions, and so on.
When you select a name for a marker, the following rules apply:

 Markers can only contain Latin letters, numbers, and underscores (_).

 The first character of a marker must be a letter or an underscore. 

 Markers cannot contain special characters, such as ä â î ß.

 The maximum length of a marker is 255 characters.

 No distinction is made between uppercase and lowercase characters. The
OneTestVariable marker, for example, defines the same variable as
onetestVariable and ONETESTVARIABLE.

There is, however, one exception to this rule: a distinction is made between
uppercase and lowercase characters for UNO-API constants. More information
about UNO is presented in Chapter 4.)

Chapter 2   The Language of StarOffice Basic   17



The rules for  constructing  markers  are different  in StarOffice Basic  than in VBA.
For example, StarOffice Basic  does not  allow special  characters  in markers,  since
they can cause problems  in international  projects.

Here are a few examples of correct and incorrect markers:

Surname ' Correct 

Surname5 ' Correct (number 5 is not the first digit)

First Name ' Incorrect (spaces are not permitted)

DéjàVu ' Incorrect (letters such as é, à are not permitted)

5Surnames ' Incorrect (the first character must not be a number)

First,Name ' Incorrect (commas and full stops are not permitted)

Working With Variables

Implicit Variable Declaration
Basic languages are designed to be easy to use. As a result, StarOffice Basic enables
the creation of a variable through simple usage and without an explicit
declaration. In other words, a variable exists from the moment that you include it
in your code. Depending on the variables that are already present, the following
example declares up to three new variables:

a = b + c

Declaring variables implicitly is not good programming practice because it can
result in the inadvertent introduction of a new variable through, for example, a
typing error. Instead of producing an error message, the interpreter initializes the
typing error as a new variable with a value of 0. It can be very difficult to locate
errors of this kind in your code.

Explicit Variable Declaration
To prevent errors caused by an implicit declaration of variables, StarOffice Basic
provides a switch called:

Option Explicit

18   OpenOffice.org  Basic  Programmer's  Guide



This must be listed in the first program line of each module and ensures that an
error message is issued if one of the variables used is not declared. The Option
Explicit switch should be included in all Basic modules.

In its simplest form, the command for an explicit declaration of a variable is as
follows:

Dim MyVar

This example declares a variable with the name MyVar and the type variant. A
variant is a universal variable that can record all conceivable values, including
strings, whole numbers, floating point figures, and Boolean values. Here are a few
examples of Variant variables:

MyVar = "Hello World" ' Assignment of a string

MyVar = 1 ' Assignment of a whole number

MyVar = 1.0 ' Assignment of a floating point number

MyVar = True ' Assignment of a Boolean value

The variables declared in the previous example can even be used for different
variable types in the same program. Although this provides considerable
flexibility, it is best to restrict a variable to one variable type. When StarOffice
Basic encounters an incorrectly defined variable type in a particular context, an
error message is generated.

Use the following style when you make a type-bound variable declaration:

Dim MyVar As Integer ' Declaration of a variable of the integer type

The variable is declared as an integer type and can record whole number values.
You can also use the following style to declare an integer type variable:

Dim MyVar% ' Declaration of a variable of the integer type

The Dim instruction can record several variable declarations:

Dim MyVar1, MyVar2

If you want to assign the variables to a permanent type, you must make separate
assignments for each variable:

Chapter 2   The Language of StarOffice Basic   19



Dim MyVar1 As Integer, MyVar2 As Integer

If you do not declare the type for a variable, StarOffice Basic assigns the variable a
variant type. For example, in the following variable declaration, MyVar1 becomes
a variant and MyVar2 becomes an integer:

Dim MyVar1, MyVar2 As Integer

The following sections list the variable types that are available in StarOffice Basic
and describe how they can be used and declared.

Strings
Strings, together with numbers, form the most important basic types of StarOffice
Basic. A string consists of a sequence of consecutive individual characters. The
computer saves the strings internally as a sequence of numbers where each
number represents one specific character.

From a Set of ASCII Characters to Unicode
Character sets match characters in a string with a corresponding code (numbers
and characters) in a table that describes how the computer is to display the string.

The ASCII Character Set

The ASCII character set is a set of codes that represent numbers, characters, and
special symbols by one byte. The 0 to 127 ASCII codes correspond to the alphabet
and to common symbols (such as periods, brackets, and commas), as well as some
special screen and printer control codes. The ASCII character set is commonly
used as a standard format for transferring text data between computers.

However, this character set does not include a range of special characters used in
Europe, such as â, ä and î, as well as other character formats, such as the Cyrillic
alphabet.

20   OpenOffice.org  Basic  Programmer's  Guide



The ANSI Character Set

Microsoft based its Windows product on the American National Standards
Institute (ANSI) character set, which was gradually extended to include characters
that are missing from the ASCII character set.

Code Pages

The ISO 8859 character sets provide an international standard. The first 128
characters of the ISO character set correspond to the ASCII character set. The ISO
standard introduces new character sets (code pages) so that more languages can be
correctly displayed. However, as a result, the same character value can represent
different characters in different languages.

Unicode

Unicode increases the length of a character to four bytes and combines different
character sets to create a standard to depict as many of the world’s languages as
possible. Version 2.0 of Unicode is now supported by many programs – including
StarOffice and StarOffice Basic.

String Variables
StarOffice Basic saves strings as string variables in Unicode. A string variable can
store up to 65535 characters. Internally, StarOffice Basic saves the associated
Unicode value for every character. The working memory needed for a string
variable depends on the length of the string.

Example declaration of a string variable:

Dim Variable As String

You can also write this declaration as:

Dim Variable$

When porting  VBA applications,  ensure that the maximum  allowed string  length  in
StarOffice Basic  is observed  (65535 characters).

Chapter 2   The Language of StarOffice Basic   21



Specification of Explicit Strings
To assign an explicit string to a string variable, enclose the string in quotation
marks (").

Dim MyString As String

MyString = " This is a test"

To split a string across two lines, add a plus sign at the end of the first line:

Dim MyString As String

MyString = "This string is so long that it" + _

"has been split over two lines."

To include a quotation mark (") in a string, enter it twice at the relevant point:

Dim MyString As String

MyString = "a ""-quotation mark." ' produces a "-quotation mark

Numbers
StarOffice Basic supports five basic types for processing numbers:

 Integer

 Long Integer

 Float

 Double

 Currency

Integer Variables
Integer variables can store any whole number between -32768 and 32767. An
integer variable can take up to two bytes of memory. The type declaration symbol
for an integer variable is %. Calculations that use integer variables are very fast
and are particularly useful for loop counters. If you assign a floating point number
to an integer variable, the number is rounded up or down to the next whole
number.

22   OpenOffice.org  Basic  Programmer's  Guide



Example declarations for integer variables:

Dim Variable As Integer

Dim Variable%

Long Integer Variables
Long integer variables can store any whole number between 2147483648 and
2147483647. A long integer variable can takes up to four bytes of memory. The
type declaration symbol for a long integer is &. Calculations with long integer
variables are very fast and are particularly useful for loop counters. If you assign a
floating point number to a long integer variable, the number is  rounded up or
down to the next whole number.

Example declarations for long integer variables:

Dim Variable as Long

Dim Variable&

Single Variables
Single variables can store any positive or negative floating point number between
3.402823 x 1038 and 1.401298 x 10-45. A single variable can take up to four bytes of
memory. The type declaration symbol for a single variable is!.

Originally, single variables were used to reduce the computing time required for
the more precise double variables. However, these speed considerations no longer
apply, reducing the need for single variables.

Example declarations for single variables:

Dim Variable as Single

Dim Variable!

Double Variables
Double variables can store any positive or negative floating point numbers
between 1.79769313486232 x 10308 and 4.94065645841247 x 10-324. A double variable

Chapter 2   The Language of StarOffice Basic   23



can take up to eight bytes of memory. Double variables are suitable for precise
calculations. The type declaration symbol is #.

Example declarations of double variables:

Dim Variable As Double

Dim Variable#

Currency Variables
Currency variables differ from the other variable types by the way they handle
values. The decimal point is fixed and is followed by four decimal places. The
variable can contain up to 15 numbers before the decimal point. A currency
variable can store any value between –922337203685477.5808 and
+922337203685477.5807 and takes up to eight bytes of memory. The type
declaration symbol for a currency variable is @.

Currency variables are mostly intended for business calculations that yield
unforeseeable rounding errors due to the use of floating point numbers.

Example declarations of currency variables:

Dim Variable As Currency

Dim Variable@

Specification of Explicit Numbers
Numbers can be presented in several ways, for example, in decimal format or in
scientific notation, or even with a different base than the decimal system. The
following rules apply to numerical characters in StarOffice Basic:

Whole Numbers

The simplest method is to work with whole numbers. They are listed in the source
text without a comma separating the thousand figure:

Dim A As Integer

Dim B As Float

A = 1210

B = 2438

24   OpenOffice.org  Basic  Programmer's  Guide



The numbers can be preceded by both a plus (+) or minus (-) sign (with or without a
space in between):

Dim A As Integer

Dim B As Float

A = + 121

B = - 243

Decimal Numbers

When you type a decimal number, use a period (.) as the decimal point. This rule
ensures that source texts can be transferred from one country to another without
conversion.

Dim A As Integer

Dim B As Integer

Dim C As Float

A = 1223.53 ' is rounded

B = - 23446.46 ' is rounded

C = + 3532.76323

You can also use plus (+) or minus (-) signs as prefixes for decimal numbers (again
with or without spaces).

If a decimal number is assigned to an integer variable, StarOffice Basic rounds the
figure up or down.

Chapter 2   The Language of StarOffice Basic   25



Exponential Writing Style

StarOffice Basic allows numbers to be specified in the exponential writing style, for
example, you can write 1.5e-10 for the number 1.5 × 10-10 (0.00000000015). The letter "e"
can be lowercase or uppercase with or without a plus sign (+) as a prefix.

Here are a few correct and incorrect examples of numbers in exponential format:

Dim A As Double

A = 1.43E2 ' Correct

A = + 1.43E2 ' Correct (space between plus and basic number)

A = - 1.43E2 ' Correct (space between minus and basic number)

A = 1.43E-2 ' Correct (negative exponent)

A = 1.43E -2 ' Incorrect (spaces not permitted within the number)

A = 1,43E-2 ' Incorrect (commas not permitted as decimal points)

A = 1.43E2.2 ' Incorrect (exponent must be a whole number)

Note that in the first and third incorrect examples that no error message is
generated even though the variables return incorrect values. The expression 

A = 1.43E -2

is interpreted as 1.43 minus 2, which corresponds to the value –0.57. However, the

value 1.43 * 102 (corresponding to 0.0143) was the intended value. With the value

A = 1.43E2.2

StarOffice Basic ignores the part of the exponent after the decimal point and interprets
the expression as

A = 1.43E2

Hexadecimal Values

In the hexadecimal system (base 16 system), a 2-digit number corresponds to
precisely one byte. This allows numbers to be handled in a manner which more
closely reflects machine architecture. In the hexadecimal system, the numbers 0 to
9 and the letters A to F are used as numbers. An A stands for the decimal number

26   OpenOffice.org  Basic  Programmer's  Guide



10, while the letter F represents the decimal number 15. StarOffice Basic lets you
use whole numbered hexadecimal values, so long as they are preceded by &H.

Dim A As Long

A = &HFF ' Hexadecimal value FF, corresponds to the decimal value 255

A = &H10 ' Hexadecimal value 10, corresponds to the decimal value 16

Octal Values

StarOffice Basic also understands the octal system (base 8 system), which uses the
numbers 0 to 7. You must use whole numbers that are preceded by &O.

Dim A As Long

A = &O77 ' Octal value 77, corresponds to the decimal value 63

A = &O10 ' Octal value 10, corresponds to the decimal value 8

True and False

Boolean Variables
Boolean variables can only contain one of two values: True or False. They are
suitable for binary specifications that can only adopt one of two statuses. A
Boolean value is saved internally as a two-byte integer value, where 0 corresponds
to the False and any other value to True. There is no type declaration symbol for
Boolean variables. The declaration can only be made using the supplement As
Boolean. 

Example declaration of a Boolean variable:

Dim Variable As Boolean

Chapter 2   The Language of StarOffice Basic   27



Date and Time Details

Date Variables
Date variables can contain date and time values. When saving date values,
StarOffice Basic uses an internal format that permits comparisons and mathematical
operations on date and time values. There is no type declaration symbol for date
variables. The declaration can only be made using the supplement As Date. 

Example declaration of a date variable:

Dim Variable As Date

Data Fields
In addition to simple variables (scalars), StarOffice Basic also supports data fields (
arrays). A data field contains several variables, which are addressed through an
index.

Simple Arrays
An array declaration is similar to that of a simple variable declaration. However,
unlike the variable declaration, the array name is followed by brackets which
contain the specifications for the number of elements. The expression 

Dim MyArray(3) 

declares an array that has four variables of the variant data type, namely MyArray
(0), MyArray(1), MyArray(2) and MyArray(3).

You can also declare type-specific variables in an array. For example, the
following line declares an array with four integer variables:

Dim MyInteger(3) As Integer

In the previous examples, the index for the array always begins with the standard
start value of zero. As an alternative, a validity range with start and end values
can be specified for the data field declaration. The following example declares a

28   OpenOffice.org  Basic  Programmer's  Guide



data field that has six integer values and which can be addressed using the indexes 5
to 10:

Dim MyInteger(5 To 10) 

The indexes do not need to be positive values. The following example also shows a
correct declaration, but with negative data field limits:

Dim MyInteger(-10 To -5) 

It declares an integer data field with 6 values that can be addressed using the
indexes -10 to -5. 

There are three limits that you must observe when you define data field indexes:

 The smallest possible index is -32768.

 The largest possible index is 32767.

 The maximum number of elements (within a data field dimension) is 16368. 

Other limit  values sometimes  apply  for  data field  indexes in VBA. The same also
applies to the maximum  number  of elements  possible  per dimension.  The values
valid  there can be found  in the relevant  VBA documentation.

Specified Value for Start Index
The start index of a data field usually begins with the value 0. Alternatively, you
can change the start index for all data field declarations to the value 1 by using the
call:

Option Base 1

The call must be included in the header of a module if you want it to apply to all
array declarations in the module. However, this call does not affect the UNO
sequences that are defined through the StarOffice API whose index always begins
with 0. To improve clarity, you should avoid using Option Base 1.

The number of elements in an array is not affected if you use Option Base 1, only
the start index changes. The declaration 

Chapter 2   The Language of StarOffice Basic   29



Option Base 1

' ...

Dim MyInteger(3)

creates 4 integer variables which can be described with the expressions
MyInteger(1), MyInteger(2), MyInteger(3) and MyInteger(4).

In StarOffice Basic,  the expression  Option  Base 1 does not  affect  the number  of
elements  in an array as it  does in VBA. It is, rather, the start  index  which  moves  in
StarOffice Basic.  While the declaration  MyInteger(3) creates three integer  values

in VBA with  the indexes 1 to 3, the same declaration  in StarOffice Basic  creates
four  integer values with  the indexes  1 to 4.

Multi-Dimensional Data Fields
In addition to single dimensional data fields, StarOffice Basic also supports work
with multi-dimensional data fields. The corresponding dimensions are separated
from one another by commas. The example

Dim MyIntArray(5, 5) 

defines an integer array with two dimensions, each with 6 indexes (can be
addressed through the indexes 0 to 5). The entire array can record a total of 6 × 6 =
36 integer values.

Although you can define hundreds of dimensions in StarOffice Basic Arrays;
however, the amount of available memory limits the number of dimensions you
can have.

Dynamic Changes in the Dimensions of Data Fields
The previous examples are based on data fields of a specified dimension. You can
also define arrays in which the dimension of the data fields dynamically changes.
For example, you can define an array to contain all of the words in a text that
begin with the letter A. As the number of these words is initially unknown, you
need to be able to subsequently change the field limits. To do this in StarOffice
Basic, use the following call:

ReDim MyArray(10)

30   OpenOffice.org  Basic  Programmer's  Guide



Unlike VBA, where you can only  dimension  dynamic  arrays  by using  Dim MyArray
(), StarOffice Basic  lets you change both  static  and dynamic  arrays using  ReDim.

The following example changes the dimension of the initial array so that it can
record 11 or 21 values:

Dim MyArray(4) As Integer ' Declaration with five elements 

' ...

ReDim MyArray(10) As Integer ' Increase to 11 elements

' ... 

ReDim MyArray(20) As Integer ' Increase to 21 elements

When you reset the dimensions of an array, you can use any of the options
outlined in the previous sections. This includes declaring multi-dimensional data
fields and specifying explicit start and end values. When the dimensions of the
data field are changed, all contents are lost. If you want to keep the original
values, use the Preserve command:

Dim MyArray(10) As Integer ' Defining the initial 

' dimensions

' ... 

ReDim Preserve MyArray(20) As Integer ' Increase in 

' data field, while

' retaining content

When you use Preserve, ensure that the number of dimensions and the type of
variables remain the same.

Unlike VBA, where only  the upper limit  of the last  dimension  of a data field  can be
changed through  Preserve, StarOffice Basic  lets  you change other  dimensions  as

well .

If you use ReDim with  Preserve, you must  use the same data type as specified  in

the original  data field  declaration.

Chapter 2   The Language of StarOffice Basic   31



Scope and Life Span of Variables
A variable in StarOffice Basic has a limited life span and a limited scope from which
it can be read and used in other program fragments. The amount of time that a
variable is retained, as well as where it can be accessed from, depends on its
specified location and type.

Local Variables
Variable that are declared in a function or a procedure are called local variables:

Sub Test

Dim MyInteger As Integer

' ...

End Sub

Local variables only remain valid as long as the function or the procedure is
executing, and then are reset to zero. Each time the function is called, the values
generated previously are not available.

To keep the previous values, you must define the variable as Static:

Sub Test

Static MyInteger As Integer

' ...

End Sub

Unlike VBA, StarOffice Basic  ensures that the name of a local  variable is not  used
simultaneously  as a global  and a private variable in the module header. When you
port  a VBA application  to StarOffice Basic,  you must  change any duplicate variable
names.

32   OpenOffice.org  Basic  Programmer's  Guide



Public Domain Variables
Public domain variables are defined in the header section of a module by the
keyword Dim. These variables are available to all of the modules in their library:

Module A:

Dim A As Integer

Sub Test

Flip

Flop

End Sub

Sub Flip

A = A + 1

End Sub

Module B: 

Sub Flop

A = A - 1

End Sub

The value of variable A is not changed by the Test function, but is increased by
one in the Flip function and decreased by one in the Flop function. Both of these
changes to the variable are global.

You can also use the keyword Public instead of Dim to declare a public domain
variable:

Public A As Integer

A public domain variable is only available so long as the associated macro is
executing and then the variable is reset.

Global Variables
In terms of their function, global variables are similar to public domain variables,
except that their values are retained even after the associated macro has executed.
Global variables are declared in the header section of a module using the keyword
Global: 

Global A As Integer

Chapter 2   The Language of StarOffice Basic   33



Private Variables
Private variables are only available in the module in which they are defined.
Use the keyword Private to define the variable:

Private MyInteger As Integer

If several modules contain a Private variable with the same name, StarOffice
Basic creates a different variable for each occurrence of the name. In the following
example, both module A and B have a Private-variable called C. The Test
function first sets the Private variable in module A and then the Private
variable in module B.

Module A:

Private C As Integer

Sub Test

SetModuleA ' Sets the variable C from module A

SetModuleB ' Sets the variable C from module B

ShowVarA ' Shows the variable C from module A (= 10)

ShowVarB ' Shows the variable C from module B (= 20)

End Sub

Sub SetmoduleeA

A = 10

End Sub

Sub ShowVarA

MsgBox C ' Shows the variable C from module A. 

End Sub

Module B: 

Private C As Integer

Sub SetModuleB

A = 20

End Sub

Sub ShowVarB

MsgBox C ' Shows the variable C from module B.

End Sub

34   OpenOffice.org  Basic  Programmer's  Guide



Constants
In StarOffice Basic, use the keyword Const to declare a constant.

Const A = 10

You can also specify the constant type in the declaration:

Const B As Double = 10

Operators
StarOffice Basic understands common mathematical, logical, and comparison
operators.

Mathematical Operators
Mathematical operators can be applied to all numbers types, whereas the +
operator can also be used to link strings.

+ Addition of numbers and date values, linking of strings

- Subtraction of numbers and date values

* Multiplication of numbers 

/ Division of numbers 

\ Division of numbers with a whole number result (rounded) 

^ Raising the power of numbers

MOD module operation (calculation of the rest of a division)

Logical Operators
Logical operators allow you to link elements according to the rules of Boolean
algebra. If the operators are applied to Boolean values, the link provides the result
required directly. If used in conjunction with integer and long integer values, the
linking is done at the bit level.

Chapter 2   The Language of StarOffice Basic   35



AND And linking

OR Or linking

XOR Exclusive or linking

NOT Negation

EQV Equivalent test (both parts True or False)

IMP Implication (if the first expression is true, then the second must also be true)

Comparison Operators
Comparison operators can be applied to all elementary variable types (numbers,
date details, strings, and Boolean values).

= Equality of numbers, date values and strings

<> Inequality of numbers, date values and strings

> Greater than check for numbers, date values and strings

>= Greater than or equal to check for numbers, date values and strings

< Less than check for numbers, date values and strings

<= Less than or equal to check for numbers, date values and strings

StarOffice Basic  does not  support  the VBA Like comparison  operator.

Branching
Use branching statements to restrict the execution of a code block until a particular
condition is satisfied.

If...Then...Else
The most common branching statement is the If statement as shown in the
following example:

If A > 3 Then

B = 2

End If

36   OpenOffice.org  Basic  Programmer's  Guide



The B = 2 assignment only occurs when value of variable A is greater than three.
A variation of the If statement is the If/Else clause:

If A > 3 Then

B = 2

Else

B = 0

End If

In this example, the variable B is assigned the value of 2 when A is greater than 3,
otherwise B is assigned the value of 0.

For more complex statements, you can cascade the If statement, for example:

If A = 0 Then

B = 0

ElseIf A < 3 Then

B = 1

Else 

B = 2

End If

If the value of variable A equals zero, B is assigned the value 0. If A is less than 3
(but not equal to zero), then B is assigned the value 1. In all other instances (that is,
if A is greater than or equal to 3), B is assigned the value 2.

Select...Case
The Select...Case instruction is an alternative to the cascaded If statement
and is used when you need to check a value against various conditions:

Select Case DayOfWeek

Case 1:

NameOfWeekday = "Sunday"

Case 2: 

NameOfWeekday = "Monday"

Case 3: 

NameOfWeekday = "Tuesday"

Case 4:

NameOfWeekday = "Wednesday"

Case 5:

NameOfWeekday = "Thursday"

Chapter 2   The Language of StarOffice Basic   37



Case 6:

NameOfWeekday = "Friday"

Case 7:

NameOfWeekday = "Saturday"

End Select

In this example, the name of a weekday corresponds to a number, so that the
DayOfWeek variable is assigned the value of 1 for Sunday, 2 for Monday value,
and so on.

The Select command is not restricted to simple 1:1 assignments – you can also
specify comparison operators or lists of expressions in a Case branch. The
following example lists the most important syntax variants:

Select Case Var

Case 1 To 5

' ... Var is between the numbers 1 and 5

Case 6, 7, 8

' ... Var is 6, 7 or 8

Case Var > 8 And Var < 11

' ... Var is greater than 8 and less than 11

Case Else

' ... all other instances

End Select

38   OpenOffice.org  Basic  Programmer's  Guide



Loops
A loop executes a code block for the number of passes that are specified. You can
also have loops with an undefined number of passes. 

For...Next
The For...Next loop has a fixed number of passes. The loop counter defines the
number of times that the loop is to be executed. In the following example,

Dim I 

For I = 1 To 10

' ...  Inner part of loop 

Next I

variable I is the loop counter, with an initial value of 1. The counter is
incremented by 1 at the end of each pass. When variable I equals 10, the loop
stops.

If you want to increment the loop counter by a value other than 1 at the end of
each pass, use the the Step function:

Dim I 

For I = 1 To 10 Step 0.5

' ... Inner part of loop 

Next I

In the preceding example, the counter is increased by 0.5 at the end of each pass
and the loop is executed 19 times.

You can also use negative step values:

Dim I 

For I = 10 To 1 Step -1

' ... Inner part of loop 

Next I

Chapter 2   The Language of StarOffice Basic   39



In this example, the counter begins at 10 and is reduced by 1 at the end of each
pass until the counter is 1.

The Exit For instruction allows you to exit a For loop prematurely. In the
following example, the loop is terminated during the fifth pass:

Dim I 

For I = 1 To 10 

If I = 5 Then 

Exit For

End If

' ... Inner part of loop 

Next I

The For Each...Next loop  variant  in VBA is not  supported  in StarOffice Basic.

Do...Loop
The Do...Loop is not linked to a fixed number of passes. Instead, the
Do...Loop is executed  until a certain condition is met. There are four variants of
the Do...Loop (in the following examples, A > 10 represents any condition):

1. The Do While...Loop variant

Do While A > 10

' ... loop body

Loop

checks whether the condition is still satisfied before every pass and only then
executes the loop.

2. The Do Until...Loop variant

Do Until A > 10

' ... loop body

Loop

executes the loop until the condition is no longer satisfied.

40   OpenOffice.org  Basic  Programmer's  Guide



3. The Do...Loop While variant

Do 

' ... loop body

Loop While A > 10

only checks the condition after the first loop pass and terminates if this
condition is satisfied.

4. The Do...Loop Until variant

Do 

' ... loop body

Loop Until A > 10

also checks its condition after the first pass, but undertakes the loop until the
condition is no longer satisfied.

As in the For...Next loop, the Do...Loop also provides a terminate
command. The Exit Do command can exit at loop at any point within the loop.

Do 

If A = 4 Then

Exit Do

End If

' ... loop body

While A > 10

Chapter 2   The Language of StarOffice Basic   41



Programming Example: Sorting With Embedded
Loops
There are many ways to use loops, for example, to search lists, return values, or
execute complex mathematical tasks. The following example is an algorithm that
uses to loops to sort a list by names.

Sub Sort

Dim Entry(1 To 10) As String

Dim Count As Integer

Dim Count2 As Integer

Dim Temp As String

Entry(1) = "Patty"

Entry(2) = "Kurt"

Entry(3) = "Thomas"

Entry(4) = "Michael"

Entry(5) = "David"

Entry(6) = "Cathy"

Entry(7) = "Susie"

Entry(8) = "Edward"

Entry(9) = "Christine"

Entry(10) = "Jerry"

For Count = 1 To 10

For Count2 = Count + 1 To 10

If Entry(Count) > Entry(Count2) Then

Temp = Entry(Count)

Entry(Count) = Entry(Count2)

Entry(Count2) = Temp

End If

Next Count2

Next Count

For Count = 1 To 10

Print Entry(Count)

Next Count

End Sub

The values are interchanged as pairs several times until they are finally sorted in
ascending order. Like bubbles, the variables gradually migrate to the right
position. For this reason, this algorithm is also known as a Bubble Sort.

42   OpenOffice.org  Basic  Programmer's  Guide



Procedures and Functions
Procedures and functions form pivotal points in the structure of a program. They
provide the framework for dividing a complex problem into various sub-tasks.

Procedures
A procedure executes an action without providing an explicit value. Its syntax is

Sub Test

' ... here is the actual code of the procedure

End Sub

The example defines a procedure called Test that contains code that can be
accessed from any point in the program. The call is made by entering the
procedure name at the relevant point of the program:

Test

Functions
A function, just like a procedure, combines a block of programs to be executed into
one logical unit. However, unlike a procedure, a function provides a return value.

Function Test

' ... here is the actual code of the function

Test = 123

End Function 

The return value is assigned using simple assignment. The assignment does not
need to be placed at the end of the function, but can be made anywhere in the
function.

The preceding function can be called within a program as follows:

Dim A

A = Test

Chapter 2   The Language of StarOffice Basic   43



The code defines a variable A and assigns the result of the Test function to it.

The return value can be overwritten several times within the function. As with
classic variable assignment, the function in this example returns the value that was
last assigned to it.

Function Test

Test = 12

' ... 

Test = 123

End Function 

In this example, the return value of the function is 123.

If an assignment is stopped, the function returns a zero value (number 0 for
numerical values and a blank for strings).

The return value of a function can be any type. The type is declared in the same
way as a variable declaration:

Function Test As Integer

' ... here is the actual code of the function

End Function 

If the specification of an explicit value is stopped, the type of the return value is
assigned as variant.

Terminating Procedures and Functions Prematurely
In StarOffice Basic, you can use the Exit Sub and Exit Function commands
to terminate a procedure or function prematurely, for example, for error handling.
These commands stop the procedure or function and return the program to the
point at which the procedure and/or function was called up.

The following example shows a procedure which terminates implementation
when the ErrorOccured variable has the value True.

44   OpenOffice.org  Basic  Programmer's  Guide



Sub Test

Dim ErrorOccured As Boolean

' ...

If ErrorOccured Then

Exit Sub

End If

' ...

End Sub

Passing Parameters
Functions and procedures can receive one or more parameters. Essential
parameters must be enclosed in brackets after the function or procedure names.
The example

Sub Test (A As Integer, B As String)

End Sub

defines a procedure that expects an integer value A and a string B as parameters.

Parameters are normally passed by Reference in StarOffice Basic. Changes made to
the variables are retained when the procedure or function is exited:

Sub Test 

Dim A As Integer

A = 10

ChangeValue(A)

' The parameter A now has the value 20

End Sub

Sub ChangeValue(TheValue As Integer)

 TheValue = 20

End Sub

In this example, the value A that is defined in the Test function is passed as a
parameter to the ChangeValue function. The value is then changed to 20 and
passed to TheValue, which is retained when the function is exited.

Chapter 2   The Language of StarOffice Basic   45



You can also pass a parameter as a value if you do not want subsequent changes to
the parameter to affect the value that is originally passed. To specify that a
parameter is to be passed as a value, ensure that the ByVal keyword precedes the
variable declaration in the function header.

In the preceding example, if we replace the ChangeValue function with the

Sub ChangeValue(ByVal TheValue As Integer)

TheValue = 20

End Sub

function, then the superordinate variable A remains unaffected by this change.
After the call for the ChangeValue function, variable A retains the value 10. 

The method  for passing  parameters  to procedures  and functions  in StarOffice
Basic  is virtually  identical  to that in VBA. By default,  the parameters  are passed by
reference. To pass parameters  as values, use the ByVal keyword.  In VBA, you  can

also use the keyword  ByRef to force a parameter to be passed by reference.

StarOffice Basic  does not  support  this  keyword  because this  is already the default
procedure in StarOffice Basic.

As a rule, functions  and procedures  in StarOffice Basic  are Public. The Public

and Private keywords  used in VBA are not  supported  in StarOffice Basic.

Optional Parameters
Functions and procedures can only be called up if all the necessary parameters are
passed during the call. 

StarOffice Basic lets you define parameters as optional , that is, if the corresponding
values are not included in a call, StarOffice Basic passes an empty parameter. In
the example 

Sub Test(A As Integer, Optional B As Integer)

End Sub

the A parameter is obligatory, whereas the B parameter is optional. 

The IsMissing function checks whether a parameter has been passed or is left
out. 

46   OpenOffice.org  Basic  Programmer's  Guide



Sub Test(A As Integer, Optional B As Integer)

Dim B_Local As Integer

' Check whether B parameter is actually present

If Not IsMissing (B) Then

B_Local = B ' B parameter present

Else

B_Local = 0 ' B parameter missing -> default value 0

End If

' ... Start the actual function

End Sub

The example first tests whether the B parameter has been passed and, if necessary,
passes the same parameter to the internal B_Local variable. If the corresponding
parameter is not present, then a default value (in this instance, the value 0) is
passed to B_ Local rather than the passed parameter. 

The option  provided  in VBA for  defining  default  values for  optional  parameters  is
not  supported  in StarOffice Basic.

The ParamArray keyword  present  in VBA is not  supported  in StarOffice Basic.

Recursion
Recursion is now possible in StarOffice Basic. A recursive procedure or function is
one that has the ability to call itself until it detects that some base condition has
been satisfied. When the function is called with the base condition, a result is
returned. 

The following example uses a recursive function to calculate the factorial of the
numbers 42, -42, and 3.14:

Sub Main 

   Msgbox CalculateFactorial(  42 )    ' Displays 1,40500611775288E+51 

   Msgbox CalculateFactorial( -42 )    ' Displays "Invalid number for

factorial!" 

Chapter 2   The Language of StarOffice Basic   47



   Msgbox CalculateFactorial( 3.14 )   ' Displays "Invalid number for

factorial!" 

End Sub 

Function CalculateFactorial( Number ) 

   If Number < 0 Or Number <> Int( Number ) Then 

       CalculateFactorial = "Invalid number for factorial!" 

   ElseIf Number = 0 Then 

       CalculateFactorial = 1 

   Else 

       ' This is the recursive call: 

       CalculateFactorial = Number * CalculateFactorial( Number - 1 ) 

   Endif 

End Function 

The example returns the factorial of the number 42 by recursively calling the
CalculateFactorial function until it reaches the base condition of 0! = 1.

Note that the recursion  level in StarOffice Basic  is limited  at this  time to 500. 

Error Handling
Correct handling of error situations is one of the most time-consuming tasks of
programming. StarOffice Basic provides a range of tools for simplifying error
handling.

The On Error Instruction
The On Error instruction is the key to any error handling:

Sub Test

On Error Goto ErrorHandler

' ... undertake task during which an error may occur

Exit Sub

ErrorHandler: 

' ... individual code for error handling

End Sub

48   OpenOffice.org  Basic  Programmer's  Guide



The On Error Goto ErrorHandler line defines how StarOffice Basic proceeds
in the event of an error. The Goto ErrorHandler ensures that StarOffice Basic
exits the current program line and then executes the ErrorHandler: code. 

The Resume Command
The Resume Next command continues the program from the line that follows
where the error occurred in the program after the code in the error handler has
been executed:

ErrorHandler:

' ... individual code for error handling

Resume Next

Use the Resume Proceed command to specify a jump point for continuing the
program after error handling:

ErrorHandler:

' ... individual code for error handling

Resume Proceed

Proceed:

' ... the program continues here after the error

To continue a program without an error message when an error occurs, use the
following format: 

Sub Test

On Error Resume Next

' ... perform task during which an error may occur

End Sub

Use the On Error Resume Next command with caution as its effect is global.
For more information, see Tips for Structured Error Handling.

Chapter 2   The Language of StarOffice Basic   49



Queries Regarding Error Information
In error handling, it is useful to have a description of the error and to know where
and why the error occurred:

 The Err variable contains the number of errors that has occurred. 

 The Error$ variable contains a description of the error.

 The Erl variable contains the line number where the error occurred. 

The call

MsgBox "Error " & Err & ": " & Error$ & " (line : " & Erl & ")"

shows how the error information can be displayed in a message window. 

Whereas VBA summarizes the error  messages in a statistical  object  called Err,

StarOffice Basic  provides  the Err, Error$, and Erl variables.  

The status information remains valid until the program encounters a Resume or
On Error command, whereupon the information is reset. 

In VBA, the Err.Clear method  of the Err object  resets  the error  status  after an

error  occurs.  In StarOffice Basic,  this  is accomplished  with  the On Error or

Resume commands.  

Tips for Structured Error Handling
Both the definition command, On Error, and the return command, Resume, are
variants of the Goto construct.

If you want to cleanly structure your code to prevent generating errors when you
use this construct, you should not use jump commands without monitoring them.

Care should be taken when you use the On Error Resume Next command as
this dismisses all open error messages.

The best solution is to use only one approach for error handling within a program
- keep error handling separate from the actual program code and do not jump
back to the original code after the error occurs.

50   OpenOffice.org  Basic  Programmer's  Guide



The following is an example of an error handling procedure:

Sub Example

' Define error handler at the start of the function 

On Error Goto ErrorHandler

' ... Here is the actual program code

' Deactivate error handling

On Error Goto 0

' End of regular program implementation

Exit Sub

' Start point of error handling

ErrorHandler: 

' Check whether error was expected

If Err = ExpectedErrorNo Then

' ... Process error

Else

' ... Warning of unexpected error

End If

On Error Goto 0 ' Deactivate error handling 

End Sub

This procedure begins with the definition of an error handler, followed by the
actual program code. At the end of the program code, the error handling is
deactivated by the On Error Goto 0 call and the procedure implementation is
ended by the Exit Sub command (not to be confused with End Sub). 

The example first checks if the error number corresponds to the expected number
(as stored in the imaginary ExpectedErrorNo constant) and then handles the
error accordingly. If another error occurs, the system outputs a warning. It is
important to check the error number so that unanticipated errors can be detected.

The On Error Goto 0 call at the end of the code resets the status information of
the error (the error code in the Err system variables) so that an error occurring at
a later date can however be clearly recognized.

Chapter 2   The Language of StarOffice Basic   51



52   OpenOffice.org  Basic  Programmer's  Guide



3 The Runtime Library of StarOffice Basic
The following sections present the central functions of the runtime library. 

Conversion Functions
In many situations, circumstances arise in which a variable of one type has to be
changed into a variable of another type. 

Implicit and Explicit Type Conversions
The easiest way to change a variable from one type to another is to use an
assignment.

Dim A As String

Dim B As Integer

B = 101 

A = B

In this example, variable A is a string, and variable B is an integer. StarOffice Basic
ensures that variable B is converted to a string during assignment to variable A.
This conversion is much more elaborate than it appears: the integer B remains in
the working memory in the form of a two-byte long number. A, on the other
hand, is a string, and the computer saves a one- or two-byte long value for each
character (each number). Therefore, before copying the content from B to A, B has
to be converted into A's internal format. 

53

CHAPTER  3



Unlike most other programming languages, Basic performs type conversion
automatically. However, this may have fatal consequences. Upon closer
inspection, the following code sequence

Dim A As String

Dim B As Integer

Dim C As Integer

B = 1 

C = 1

A = B + C

which at first glance seems straightforward, ultimately proves to be something of
a trap. The Basic interpreter first calculates the result of the addition process and
then converts this into a string, which, as its result, produces the string 2. 
If, on the other hand, the Basic interpreter first converts the start values B and C
into a string and applies the plus operator to the result, it produces the string 11. 

The same applies when using variant variables: 

Dim A 

Dim B 

Dim C 

B = 1 

C = "1"

A = B + C

Since variant variables may contain both numbers and strings, it is unclear
whether variable A is assigned the number 2 or the string 11. 

The error sources noted for implicit type conversions can only be avoided by
careful programming; for example, by not using the variant data type.

To avoid other errors resulting from implicit type conversions, StarOffice Basic
offers a range of conversion functions, which you can use to define when the data
type of an operation should be converted: 

 CStr(Var) – converts any data type into a string.

 CInt(Var) – converts any data types into an integer value.

 CLng(Var) – converts any data types into a long value.

54   OpenOffice.org  Basic  Programmer's  Guide



 CSng(Var) – converts any data types into a single value.

 CDbl(Var) – converts any data types into a double value.

 CBool(Var) – converts any data types into a Boolean value.

 CDate(Var) – converts any data types into a date value.

You can use these conversion functions to define how StarOffice Basic should
perform these type conversion operations:

Dim A As String

Dim B As Integer

Dim C As Integer

B = 1 

C = 1

A = CStr(B + C) ' B and C are added together first, then converted 

  (produces the number 2)

A = CStr(B) + CStr(C) ' B and C are converted into a string, then

' combined (produces string "11")

During the first addition in the example, StarOffice Basic first adds the integer
variables and then converts the result into a chain of characters. A is assigned the
string 2. In the second instance, the integer variables are first converted into two
strings and then linked with one another by means of the assignment. A is
therefore assigned the string 11.

The numerical CSng and CDbl conversion functions also accept decimal numbers.
The symbol defined in the corresponding country-specific settings must be used as
the decimal point symbol. Conversely, the CStr methods use the currently
selected country-specific settings when formatting numbers, dates and time
details. 

The Val function is different from the Csng, Cdbl and Cstr methods. It
converts a string into a number; however it always expects a period to be used as
the decimal point symbol.

Dim A As String

Dim B As Double

A = "2.22"

Chapter 3   The Runtime Library  of StarOffice  Basic   55



B = Val(A)

'Is converted correctly regardless of the country-specific settings

Checking the Content of Variables
In some instances, the date cannot be converted: 

Dim A As String

Dim B As Date

A = "test"

B = A ' Creates error message

In the example shown, the assignment of the test string to a date variable makes
no sense, so the Basic interpreter reports an error. The same applies when
attempting to assign a string to a Boolean variable: 

Dim A As String

Dim B As Boolean

A = "test"

B = A ' Creates error message

Again, the basic interpreter reports an error. 

These error messages can be avoided by checking the program before an
assignment, in order to establish whether the content of the variable to be assigned
matches the type of the target variable. 
StarOffice Basic provides the following test functions for this purpose:

 IsNumeric(Value) – checks whether a value is a number. 

 IsDate(Value) – checks whether a value is a date.

 IsArray(Value) – checks whether a value is an array.

These functions are especially useful when querying user input. For example, you
can check whether a user has typed a valid number or date.

If IsNumeric(UserInput) Then

ValidInput = UserInput

Else

56   OpenOffice.org  Basic  Programmer's  Guide



ValidInput = 0

MsgBox "Error message."

End If

In the previous example, if the UserInput variable contains a valid numerical
value, then this is assigned to the ValidInput variable. If UserInput does not
contain a valid number, ValidInput is assigned the value 0 and an error
message is returned.

While test functions exist for checking numbers, date details and arrays in Basic, a
corresponding function for checking Boolean values does not exist. The
functionality can, however, be imitated by using the IsBoolean function: 

Function IsBoolean(Value As Variant) As Boolean

On Error Goto ErrorIsBoolean:

Dim Dummy As Boolean

Dummy = Value

IsBoolean = True

On Error Goto 0

Exit Sub

ErrorIsBoolean:

IsBoolean = False

On Error Goto 0

End Function

The IsBoolean function defines an internal Dummy help variable of the Boolean
type and tries to assign this to the transferred value. If assignment is successful,
the function returns True. If it fails, a runtime error is produced, which intercepts
the test function to return an error.

If a string  in StarOffice Basic  contains  a non-numerical  value and if  this  is
assigned  to a number, StarOffice Basic  does not  produce an error  message, but
transfers  the value 0 to the variable. This  procedure differs  from VBA. There, an

error  is triggered  and program implementation  terminated  if a corresponding
assignment  is executed.

Chapter 3   The Runtime Library  of StarOffice  Basic   57



Strings

Working with Sets of Characters
When administering strings, StarOffice Basic uses the set of Unicode characters.
The Asc and Chr functions allow the Unicode value belonging to a character to be
established and/or the corresponding character to be found for a Unicode value.
The following expressions assign the various Unicode values to the code variable:

Code = Asc("A") ' Latin letter A (Unicode-value 65)

Code = Asc("€") ' Euro character (Unicode-value 8364)

Code = Asc("л") ' Cyrillic letter л (Unicode-value 1083)

Conversely, the expression 

MyString = Chr(13) 

ensures that the MyString string is initialized with the value of the number 13,
which stands for a hard line break.

The Chr command is often used in Basic languages to insert control characters in a
string. 
The assignment

MyString = Chr(9) + "This is a test" + Chr(13)

therefore ensures that the text is preceded by a tab character (Unicode-value 9)
and that a hard line break (Unicode-value 13) is added after the text. 

Accessing Parts of a String
StarOffice Basic provides four functions that return partial strings: 

 Left(MyString, Length) – returns the first Length characters of
MyString.

 Right(MyString, Length) – returns the last Length characters of
MyString.

58   OpenOffice.org  Basic  Programmer's  Guide



 Mid(MyString, Start, Length) – returns first Length characters of
MyString as of the Start position.

 Len(MyString) – returns the number of characters in MyString.

Here are a few example calls for the named functions: 

Dim MyString As String

Dim MyResult As String

Dim MyLen As Integer

MyString = "This is a small test"

MyResult = Left(MyString,5) ' Provides the string "This "

MyResult = Right(MyString, 5) ' Provides the string " test"

MyResult = Mid(MyString, 8, 5) ' Provides the string " a sm"

MyLen = Len(MyString) ' Provides the value 21

Search and Replace
StarOffice Basic provides the InStr function for searching for a partial string within
another string:

ResultString = InStr (SearchString, MyString)

The SearchString parameter specifies the string to be searched for within
MyString. The function returns a number that contains the position at which the
SearchString first appears within MyString. If you want to find other matches
for the string, the function also provides the opportunity to specify an optional start
position from which StarOffice Basic begins the search. In this case, the syntax of the
function is:

ResultString = InStr(StartPosition, SearchString, MyString)

In the previous examples, InStr ignores uppercase and lowercase characters. To
change the search so that InStr is case sensitive, add the parameter 0, as shown
in the following example:

ResultString = InStr(SearchString, MyString, 0)

Chapter 3   The Runtime Library  of StarOffice  Basic   59



Using the previous functions for editing strings, programmers can search for and
replace one string in another string: 

Function Replace(Source As String, Search As String, NewPart As String)

  Dim Result As String

  Dim StartPos As Long

  Dim CurrentPos As Long

  

  Result = ""

  StartPos = 1

  CurrentPos = 1

  

  If Search = "" Then

        Result = Source

    Else 

        Do While CurrentPos <> 0

            CurrentPos = InStr(StartPos, Source, Search)

            If CurrentPos <> 0 Then

                Result = Result + Mid(Source, StartPos, _

CurrentPos - StartPos)

                Result = Result + NewPart

                StartPos = CurrentPos + Len(Search)

            Else

                Result = Result + Mid(Source, StartPos, Len(Source))

            End If ' Position <> 0

        Loop 

    End If 

    Replace = Result

End Function

The function searches through the transferred Search string in a loop by means
of InStr in the original term Source. If it finds the search term, it takes the part
before the expression and writes it to the Result return buffer. It adds the new
Part section at the point of the search term Search. If no more matches are
found for the search term, the function establishes the part of the string still
remaining and adds this to the return buffer. It returns the string produced in this
way as the result of the replacement process.

Since replacing parts of character sequences is one of the most frequently used
functions, the Mid function in StarOffice Basic has been extended so that this task
is performed automatically. The following example

60   OpenOffice.org  Basic  Programmer's  Guide



Dim MyString As String

MyString  = "This was my text"

Mid(MyString, 6, 3, "is")

replaces three characters with the string is from the sixth position of the
MyString string.

Formatting Strings
The Format function formats numbers as a string. To do this, the function expects
a Format expression to be specified, which is then used as the template for
formatting the numbers. Each place holder within the template ensures that this
item is formatted correspondingly in the output value. The five most important
place holders within a template are the zero (0), pound sign (#), period (.), comma (,)
and dollar sign ($) characters. 

The zero character within the template ensures that a number is always placed at
the corresponding point. If a number is not provided, 0 is displayed in its place. 

A period stands for the decimal point symbol defined by the operating system in
the country-specific settings.

The example below shows how the zero and period characters can define the digits
after the decimal point in an expression:

MyFormat = "0.00"

MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1579,80"

MyString = Format(0.4, MyFormat) ' Provides "0,40"

MyString = Format(0.434, MyFormat) ' Provides "0,43"

In the same way, zeros can be added in front of a number to achieve the desired
length:

MyFormat = "0000.00"

MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1579,80"

MyString = Format(0.4, MyFormat) ' Provides "0000,40"

MyString = Format(0.434, MyFormat) ' Provides "0000,43"

Chapter 3   The Runtime Library  of StarOffice  Basic   61



A comma represents the character that the operating system uses for a thousands
separator, and the pound sign stands for a digit or place that is only displayed if it is
required by the input string.

MyFormat = "#,##0.00"

MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80"

MyString = Format(1579.8, MyFormat) ' Provides "1.579,80"

MyString = Format(0.4, MyFormat) ' Provides "0,40"

MyString = Format(0.434, MyFormat) ' Provides "0,43"

In place of the dollar sign place holder, the Format function displays the relevant
currency symbol defined by the system:

MyFormat = "#,##0.00 $"

MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80 €" 

MyString = Format(1579.8, MyFormat) ' Provides "1.579,80 €" 

MyString = Format(0.4, MyFormat) ' Provides "0,40 €" 

MyString = Format(0.434, MyFormat) ' Provides "0,43 €" 

The format  instructions  used in VBA for  formatting  date and time details  are not
supported  in StarOffice Basic.

Date and Time
StarOffice Basic provides the Date data type, which saves the date and time
details in binary format.

Specification of Date and Time Details within the
Program Code
You can assign a date to a date variable through the assignment of a simple string:

Dim MyDate As Date

MyDate = "1.1.2002"

62   OpenOffice.org  Basic  Programmer's  Guide



This assignment can function properly because StarOffice Basic automatically
converts the date value defined as a string into a date variable. This type of
assignment, however, can cause errors,  date and time values are defined and
displayed differently in different countries.

Since StarOffice Basic uses the country-specific settings of the operating system
when converting a string into a date value, the expression shown previously only
functions correctly if the country-specific settings match the string expression.

To avoid this problem, the DateSerial function should be used to assign a fixed
value to a date variable:

Dim MyVar As Date

MyDate = DateSerial (2001, 1, 1)

The function parameter must be in the sequence: year, month, day. The function
ensures that the variable is actually assigned the correct value regardless of the
country-specific settings 

The TimeSerial function formats time details in the same way that the
DateSerial function formats dates:

Dim MyVar As Date

MyDate =  TimeSerial(11, 23, 45)

Their parameters should be specified in the sequence: hours, minutes, seconds.

Extracting Date and Time Details
The following functions form the counterpart to the DateSerial and
TimeSerial functions:

 Day(MyDate) – returns the day of the month from MyDate

 Month(MyDate) – returns the month from MyDate

 Year(MyDate) – returns the year from MyDate

 Weekday(MyDate) – returns the number of the weekday from MyDate

 Hour(MyTime) – returns the hours from MyTime

 Minute(MyTime) – returns the minutes from MyTime

 Second(MyTime) – returns the seconds from MyTime

Chapter 3   The Runtime Library  of StarOffice  Basic   63



These functions extract the date or time sections from a specified Date variable.
The example 

Dim MyDate As Date

' ... Initialization of MyDate

If Year(MyDate) = 2003 Then

' ... Specified date is in the year 2003

End If

checks whether the date saved in MyDate is in the year 2003. In the same way, the
example

Dim MyTime As Date

' ... Initialization of MyTime

If Hour(MyTime) >= 12 And Hour(MyTime) < 14 Then

' ... Specified time is between 12 and 14 hours

End If

checks whether MyTime is between 12 and 14 hours. 

The Weekday function returns the number of the weekday for the transferred
date: 

Dim MyDate As Date

Dim MyWeekday As String

' ... initialize MyDate 

Select Case WeekDay(MyDate)

case 1

MyWeekday = "Sunday"

case 2

MyWeekday = "Monday"

case 3

MyWeekday = "Tuesday"

case 4

MyWeekday = "Wednesday"

case 5

MyWeekday = "Thursday"

case 6

MyWeekday = "Friday"

case 7

MyWeekday = "Saturday"

End Select

Note: Sunday is considered the first day of the week.

64   OpenOffice.org  Basic  Programmer's  Guide



Retrieving System Date and Time
The following functions are available in StarOffice Basic to retrieve the system time
and system date: 

 Date – returns the present date

 Time – returns the present time

 Now – returns the present point in time (date and time as combined value)

Files and directories
Working with files is one of the basic tasks of an application. The StarOffice API
provides you with a whole range of objects with which you can create, open and
modify Office documents. These are presented in detail in Chapter 4. Regardless of
this, in some instances you will have to directly access the file system, search
through directories or edit text files. The runtime library from StarOffice Basic
provides several fundamental functions for these tasks.

Some DOS-specific  file and directory  functions  are no longer  provided  in
StarOffice 7, or their  function  
is only  limited. For example, support  for  the ChDir, ChDrive and CurDir functions

is not  provided.  
Some DOS-specific  properties  are no longer  used in functions  that expect  file
properties  as parameters  (for  example, to differentiate from concealed files  and
system files). This change became necessary  to ensure the greatest  possible  level
of platform  independence for  StarOffice.

Administering Files

Searching through Directories

The Dir function in StarOffice Basic is responsible for searching through
directories for files and sub-directories. When first requested, a string containing
the path of the directories to be searched must be assigned to Dir as its first
parameter. The second parameter of Dir specifies the file or directory to be
searched for. StarOffice Basic returns the name of the first directory entry found.

Chapter 3   The Runtime Library  of StarOffice  Basic   65



To retrieve the next entry, the Dir function should be requested without
parameters. If the Dir function finds no more entries, it returns an empty string.

The following example shows how the Dir function can be used to request all files
located in one directory. The procedure saves the individual file names in the
AllFiles variable and then displays this in a message box.

Sub ShowFiles

Dim NextFile As String

Dim AllFiles As String

AllFiles = ""

NextFile = Dir("C:\", 0)

While NextFile  <> ""

AllFiles = AllFiles & Chr(13) &  NextFile 

NextFile  = Dir

Wend

MsgBox AllFiles

End Sub

The 0 used as the second parameter in the Dir function ensures that Dir only
returns the names of files and directories are ignored. The following parameters
can be specified here:

 0 : returns normal files

 16 : sub-directories

The following example is virtually the same as the preceding example, but the Dir
function transfers the value 16 as a parameter, which returns the sub-directories of
a folder rather than the file names.

Sub ShowDirs

Dim NextDir As String

Dim AllDirs As String

AllDirs = ""

NextDir = Dir("C:\", 16)

While NextDir <> ""

AllDirs = AllDirs & Chr(13) &  NextDir

NextDir  = Dir

Wend

MsgBox AllDirs

End Sub

66   OpenOffice.org  Basic  Programmer's  Guide



When requested  in StarOffice Basic,  unlike  the case with  VBA, the Dir function

using  the parameter 16 only  returns  the sub-directories  of a folder. (In VBA, the

function  also returns  the names of the standard  files  so that further  checking  is
needed to retrieve the directories  only). 

The options  provided  in VBA for searching  through  directories  specifically  for  files
with  the concealed , system file, archived  and volume name properties  does not
exist  in StarOffice Basic  because the corresponding  file system functions  are not
available on all  operating  systems.

The path specifications  listed  in Dir may use the * and ? place holders  in both

VBA and StarOffice Basic.  In StarOffice Basic,  the * place holder  may however

only  be the last  character of a file name and/or  file extension,  which  is not  the case
in VBA. 

Creating and Deleting Directories

StarOffice Basic provides the MkDir function for creating directories.

MkDir ("C:\SubDir1")

This function creates directories and sub-directories. All directories needed within
a hierarchy are also created, if required. For example, if only the C:\SubDir1
directory exists, then a call 

MkDir ("C:\SubDir1\SubDir2\SubDir3\")

creates both the C:\SubDir1\SubDir2 directory and the
C:\SubDir1\SubDir2\SubDir3 directory. 

The RmDir function deletes directories.

RmDir ("C:\SubDir1\SubDir2\SubDir3\")

If the directory contains sub-directories or files, these are also deleted. You should
therefore be careful when using RmDir.

In VBA, the MkDir and RmDir functions  only  relate to the current  directory.  In

StarOffice Basic  on the other  hand, MkDir and RmDir can be used to create or

delete levels of directories.  

Chapter 3   The Runtime Library  of StarOffice  Basic   67



In VBA, RmDir produces  an error  message if  a directory  contains  a file. In

StarOffice Basic,  the directory  and all  its  files  are deleted.

Copying, Renaming, Deleting and Checking the Existence of Files

The call 

FileCopy(Source, Destination) 

creates a copy of the Source file under the name of Destination. 

With the help of the function 

Name OldName As NewName 

you can rename the OldName file with NewName. The As keyword syntax, and the
fact that a comma is not used, goes back to the roots of the Basic language. 

The call 

Kill(Filename) 

deletes the Filename file. If you want to delete directory (including its files)use
the RmDir function. 

The FileExists function can be used to check whether a file exists: 

If FileExists(Filename) Then 

MsgBox "file exists."

End If

Reading and Changing File Properties

When working with files, it is sometimes important to be able to establish the file
properties, the time the file was last changed and the length of the file. 

The call 

Dim Attr As Integer

Attr = GetAttr(Filename)

68   OpenOffice.org  Basic  Programmer's  Guide



returns some properties about a file. The return value is provided as a bit mask in
which the following values are possible: 

 1 : read-only file

 16 : name of a directory

The example 

Dim FileMask As Integer

Dim FileDescription As String

FileMask = GetAttr("test.txt")

If (FileMask AND 1) > 0 Then

FileDescription = FileDescription & " read-only "

End IF

If (FileMask AND 16) > 0 Then

FileDescription = FileDescription & " directory "

End IF

If FileDescription = "" Then

FileDescription = " normal "

End IF

MsgBox FileDescription

determines the bit mask of the test.txt file and checks whether this is read-only
whether it is a directory. If neither of these apply, FileDescription is assigned
the "normal" string. 

The flags  used in VBA for querying  the concealed , system file, archived  and
volume name file properties  are not  supported  in StarOffice Basic  because these
are Windows-specific  and are not  or are only  partially  available on other operating
systems.

The SetAttr function permits the properties of a file to be changed. The call

SetAttr("test.txt", 1)

can therefore be used to provide a file with read-only status. An existing read-only
status can be deleted with the following call:

Chapter 3   The Runtime Library  of StarOffice  Basic   69



SetAttr("test.txt", 0)

The date and time of the last amendment to a file are provided by the
FileDateTime function. The date is formatted here in accordance with the
country-specific settings used on the system.

FileDateTime("test.txt") ' Provides date and time of the last file

amendment.

The FileLen function determines the length of a file in bytes (as long integer
value).

FileLen("test.txt") ' Provides the length of the file in bytes

Writing and Reading Text Files
StarOffice Basic provides a whole range of methods for reading and writing files.
The following explanations relate to working with text files (not text documents).

Writing Text Files

Before a text file is accessed, it must first be opened. To do this, a free file handle is
needed, which clearly identifies the file for subsequent file access.

The FreeFile function is used to create a free file handle. The handle is used as a
parameter for the Open instruction, which opens the file. To open a file so that it
can be specified as a text file, the Open call is:

Open Filename For Output As #FileNo

Filename is a string containing the name of the file. FileNo is the handle created
by the  FreeFile function.

Once the file is opened, the Print instruction can be described line by line:

Print #FileNo, "This is a test line."

FileNo also stands for the file handle here. The second parameter specifies the
text that is to be saved as a line of the text file.

70   OpenOffice.org  Basic  Programmer's  Guide



Once the writing process has been completed, the file must be closed using a
Close call:

Close #FileNo

Again here, the file handle should be specified.

The following example shows how a text file is opened, described and closed:

Dim FileNo As Integer

Dim CurrentLine As String

Dim Filename As String

Filename = "c:\data.txt" ' Define file name 

FileNo = Freefile ' Establish free file handle

Open Filename For Output As #FileNo ' Open file (writing mode)

Print #FileNo, "This is a line of text" ' Save line 

Print #FileNo, "This is another line of text" ' Save line 

Close #FileNo ' Close file

Reading Text Files

Text files are read in the same way that they are written. The Open instruction
used to open the file contains the For Input expression in place of the For
Output expression and, rather than the Print command for writing data, the
Line Input instruction should be used to read the data.

Finally, when calling up a text file, the instruction

eof(FileNo)

is used to check whether the end of the file has been reached.

The following example shows how a text file can be read in:

Dim FileNo As Integer

Dim CurrentLine As String

Dim File As String

Dim Msg as String

' Define filename 

Filename = "c:\data.txt"

Chapter 3   The Runtime Library  of StarOffice  Basic   71



' Establish free file handle

FileNo = Freefile

' Open file (reading mode)

Open Filename For Input As FileNo

' Check whether file end has been reached

Do While not eof(FileNo)

' Read line 

Line Input #FileNo, CurrentLine

If CurrentLine <>"" then

Msg = Msg & CurrentLine & Chr(13)

end if

Loop

' Close file 

Close #FileNo

Msgbox Msg

The individual lines are retrieved in a Do While loop, saved in the Msg variable,
and displayed at the end in a message box.

72   OpenOffice.org  Basic  Programmer's  Guide



Message and Input Boxes
StarOffice Basic provides the MsgBox and InputBox functions for basic user
communication. 

Displaying Messages
MsgBox displays a basic information box, which can have one or more buttons. In
its simplest variant

MsgBox "This is a piece of information!"

the MsgBox only contains text and an OK button.

The appearance of the information box can be changed using a parameter. The
parameter provides the option of adding additional buttons, defining the pre-
assigned button, and adding an information symbol. The values for selecting the
buttons are: 

 0 – OK button

 1 – OK and Cancel button

 2 – Cancel and Retry buttons 

 3 – Yes, No and Cancel buttons

 4 – Yes and No buttons

 5 – Retry and Cancel buttons

To set a button as the default button, add one of the following values to the
parameter value from the list of button selections. For example, to create Yes, No
and Cancel buttons (value 3) where Cancel is the default (value 512), the
parameter value is 3 + 512 = 515. 

 0 – First button is default value

 256 – Second button is default value 

 512 – Third button is default value

Chapter 3   The Runtime Library  of StarOffice  Basic   73



Finally, the following information symbols are available and can also be displayed
by adding the relevant parameter values: 

 16 – Stop sign

 32 – Question mark 

 48 – Exclamation point

 64 – Tip icon

The call 

MsgBox "Do you want to continue?",  292

displays an information box with the Yes and No buttons (value 4), of which the
second button (No) is set as the default value (value 256) and which also receives a
question mark (value 32), 4+256+32=292

If an information box contains several buttons, then a return value should be
queried to determine which button has been pressed. The following return values
are available in this instance:

 1 – Ok 

 2 – Cancel

 4 – Retry

 5 – Ignore

 6 – Yes

 7 – No 

In the previous example, checking the return values could be as follows: 

If MsgBox ("Do you want to continue?",  292) = 6 Then

' Yes button pressed

Else

' No button pressed

End IF

In addition to the information text and the parameter for arranging the information
box, MsgBox also permits a third parameter, which defines the text for the box title:

MsgBox "Do you want to continue?",  292, "Box Title"

If no box title is specified, the default is “soffice”.

74   OpenOffice.org  Basic  Programmer's  Guide



Input Box For Querying Simple Strings
The InputBox function queries simple strings from the user. It is therefore a
simple alternative to configuring dialogs. InputBox receives three standard
parameters:

 an information text,

 a box title,

 a default value which can be added within the input area. 

InputVal = InputBox("Please enter value:", "Test", "default value")

As a return value, the InputBox provides the string typed by the user. 

Other functions

Beep
The Beep function causes the system to play a sound that can be used to warn the
user of an incorrect action. Beep does not have any parameters:

Beep ' creates an informative tone

Shell
External programs can be started using the Shell function.

Shell(Pathname, Windowstyle, Param)

Pathname defines the path of the program to be executed. Windowstyle defines
the window in which the program is started. The following values are possible: 

 0 – The program receives the focus and is started in a concealed window. 

 1 – The program receives the focus and is started in a normal-sized window.

 2 – The program receives the focus and is started in a minimized window. 

 3 – The program receives the focus and is started in a maximized window. 

Chapter 3   The Runtime Library  of StarOffice  Basic   75



 4 – The program is started in a normal-sized window, without receiving the
focus. 

 6 – The program is started in a minimized window, the focus remains in the
current window. 

 10 – The program is started in full screen mode. 

The third parameter, Param, permits command line parameters to be transferred
to the program to be started.

Wait
The Wait function terminates program execution for a specified time. The waiting
period is specified in milliseconds. The command 

Wait 2000

specifies an interrupt of 2 seconds (2000 milliseconds). 

Environ
The Environ function returns the environmental variables of the operating
system. Depending on the system and configuration, various types of data are
saved here. The call 

Dim TempDir

TempDir=Environ ("TEMP")

determines the environment variables of temporary directory of the operating
system. 

76   OpenOffice.org  Basic  Programmer's  Guide



4 Introduction to the StarOffice API
The StarOffice API is a universal programming interface for access to StarOffice. You
can use the StarOffice API to create, open, modify and print out StarOffice documents.
It provides the option of extending the functional scope of StarOffice through personal
macros and allows personal dialogs to be written.

The StarOffice API may not only be used with StarOffice Basic, but also with other
programming languages such as Java and C++. A technique called Universal
Network Objects (UNO) which provides an interface to various programming
languages makes this possible. 

This chapter centers on how StarOffice can be used in StarOffice Basic with the aid
of UNO. It describes the main concepts of UNO from the standpoint of a
StarOffice Basic programmer. Details on how to work with the various parts of the
StarOffice API can be found in the following chapters. 

Universal Network Objects (UNO)
StarOffice provides a programming interface in the form of the Universal Network
Objects (UNO). This is an object-oriented programming interface which StarOffice
sub-divides into various objects which for their part ensure program-controlled
access to the Office package.

Since StarOffice Basic is a procedural programming language, several linguistic
constructs have had to be added to it which enable the use of UNO. 

To use a Universal Network Object in StarOffice Basic, you will need a variable
declaration for the associated object. The declaration is made using the Dim

77

CHAPTER  4



instruction (see Chapter 2). The Object type designation should be used to
declare an object variable: 

Dim Obj As Object

The call declares an object variable named Obj. 

The object variable created must then be initialized so that it can be used. This can
be done using the createUnoService function: 

Obj = createUnoService("com.sun.star.frame.Desktop")

This call assigns to the Obj variable a reference to the newly created object.
com.sun.star.frame.Desktop resembles an object type; however in UNO
terminology it is called a “service” rather than a type. In accordance with UNO
philosophy, an Obj is described as a reference to an object which supports the
com.sun.star.frame.Desktop service. The “service” term used in StarOffice
Basic therefore corresponds to the type and class terms used in other programming
languages. 

There is, however, one main difference: a Universal Network Object may support
several services at the same time. Some UNO services in turn support other
services so that, through one object, you are provided with a whole range of
services. For example, that the aforementioned object, which is based on the
com.sun.star.frame.Desktop service, can also include other services for
loading documents and for ending the program.

Whereas the structure  of an object  in VBA is defined  by the class  to which  it
belongs,  in StarOffice Basic  the structure  is defined  through  the services  which  it
supports.  A VBA object  is  always assigned  to precisely  one single  class.  A
StarOffice Basic  object  can, however, support  several  services.

78   OpenOffice.org  Basic  Programmer's  Guide



Properties and Methods
An object in StarOffice Basic provides a range of properties and methods which
can be called by means of the object. 

Properties
Properties are like the properties of an object; for example, Filename and Title
for a Document object.

The properties are set by means of a simple assignment:

Document.Title = "StarOffice 7 Basic Programmer's Guide"

Document.Filename = "progman.sxv"

A property, just like a normal variable, has a type that defines which values it can
record. 
The preceding Filename and Title properties are of the string type.

Real Properties and Imitated Properties

Most of the properties of an object in StarOffice Basic are defined as such in the
UNO description of the service. In addition to these "real" properties, there are
also properties in StarOffice Basic which consist of two methods at the UNO level.
One of these is used to query the value of the property and the other is issued to
set it (get and set methods). The property has been virtually imitated from two
methods. Character objects in UNO, for example, provide the getPosition and
setPosition methods through which the associated key point can be called up
and changed. The StarOffice Basic programmer can access the values through the
Position property. Regardless of this, the original methods are also available (in
our example, getPosition and setPosition).

Chapter 4   Introduction  to the StarOffice API  79



Methods
Methods can be understood as functions that relate directly to an object and
through which this object is called. The preceding Document object could, for
example, provide a Save method, which can be called as follows:

Document.Save()

Methods, just like functions, may contain parameters and return values. The
syntax of such method calls is oriented towards classic functions. The call

Ok = Document.Save(True)

also specifies the True parameter for the document object when requesting the
Save method. 
Once the method has been completed, Save saves a return value in the Ok
variable. 

Modules, Services and Interfaces
StarOffice provides hundreds of services. To provide an overview of these
services, they have been combined into modules. The modules are of no other
functional importance for StarOffice Basic programmers. When specifying a
service name, it is only the module name which is of any importance because this
must be also listed in the name. The complete name of a service consists of the
com.sun.star expression, which specifies that it is a StarOffice service, followed
by the module name, such as frame, and finally the actual service name, such as
Desktop. The complete name in the named example would be: 

com.sun.star.frame.Desktop

In addition to the module and service terms, UNO introduces the term “interface”.
While this term may be familiar to Java programmers, it is not used in Basic. 

An interface combines several methods. In the strictest sense of the word, a service
in UNO does not support methods, but rather interfaces, which in turn provide
different methods. In other words, the methods are assigned (as combinations) to
the service in interfaces. This detail may be of interest in particular to Java- or C++

80   OpenOffice.org  Basic  Programmer's  Guide



programmers, since in these languages, the interface is needed to request a
method. In StarOffice Basic, this is irrelevant. Here, the methods are called directly
by means of the relevant object. 

For an understanding of the API, it is, however, useful to have the assignment of
methods to various interfaces handy, since many interfaces are used in the
different services. If you are familiar with an interface, then you can transfer your
knowledge from one service to another. 

Some central interfaces are used so frequently that they are shown again at the end
of this chapter, triggered by different services. 

Tools for Working with UNO
The question remains as to which objects – or services if we are going to remain
with UNO terminology – support which properties, methods and interfaces and
how these can be determined. In addition to this guide, you can get more
information about objects from the following sources:  the supportsService
method, the debug methods as well as the Developer's Guide, and the API
reference. 

The supportsService Method
A number of UNO objects support the supportsService method, with which
you can establish whether an object supports a particular service. The call

Ok = TextElement.supportsService("com.sun.star.text.Paragraph")

for example, determines whether the TextElement object supports the
com.sun.star.text.Paragraph service. 

Debug Properties
Every UNO object in StarOffice Basic knows what properties, methods and
interfaces it already contains. It provides properties that return these in the form of
a list. The corresponding properties are: 

DBG_properties - returns a string containing all properties of an object

Chapter 4   Introduction  to the StarOffice API  81



DBG_methods - returns a string containing all methods of an object 

DBG_supportetInterfaces - returns a string containing all interfaces which
support an object.

The following program code shows how DBG_properties and DBG_methods
can be used in real-life applications. It first creates the
com.sun.star.frame.Desktop service and then displays the supported
properties and methods in message boxes.

Dim Obj As Object

Obj = createUnoService("com.sun.star.frame.Desktop")

MsgBox Obj.DBG_Propierties

MsgBox Obj.DBG_methods

When using DBG_properties, note that the function returns all properties that
one particular service can theoretically support. No assurances are, however,
provided for whether these can also be used by the object in question. Before
calling up properties, you must therefore use the IsEmpty function to check
whether this is actually available.

API Reference
More information about the available services, and their interfaces, methods and
properties can be found in the API reference for the StarOffice API. This can be
found at www.openoffice.org:

http://api.openoffice.org/common/ref/com/sun/star/module-ix.html

An Overview of a Few Central Interfaces
Some interfaces of StarOffice can be found in many parts of the StarOffice API.
They define sets of methods for abstract tasks which can be applied to various
problems. Here, you will find an overview of the most common of these interfaces.

The origin of the objects is explained at a later point in this guide. At this point, only
some of the abstract aspects of objects, for which the StarOffice API provides some
central interfaces, are discussed.

82   OpenOffice.org  Basic  Programmer's  Guide



Creating Context-Dependent Objects
The StarOffice API provides two options for creating objects. One can be found in
the createUnoService function mentioned at the start of this chapter.
createUnoService  creates an object which can be used universally. Such
objects and services are also known as context-independent services. 

In addition to context-independent services, there are also context-dependent services
whose objects are only useful when used in conjunction with another object. A
drawing object for a spreadsheet document, for example, can therefore only exist
in conjunction with this one document.

com.sun.star.lang.XMultiServiceFactory Interface

Context-dependent objects are usually created by means of an object method, on
which the object depends. The createInstance method, which is defined in the
XMultiServiceFactory interface, is used in particular in the document objects.

The aforementioned drawing object can, for example,e be created as follows using
a spreadsheet object: 

Dim RectangleShape As Object

RectangleShape = _

Spreadsheet.createInstance("com.sun.star.drawing.RectangleShape")

A paragraph template in a text document is created in the same way: 

Dim Style as Object

Style = Textdocument.createInstance("com.sun.star.style.ParagraphStyle")

Chapter 4   Introduction  to the StarOffice API  83



Named Access to Subordinate Objects
The XNameAccess and XNameContainer interfaces are used in objects that
contain subordinate objects, which can be addressed using a natural language
name. 

While XNamedAccess permits access to the individual objects, XNameContainer
takes on the insertion, modification and deletion of elements.

com.sun.star.container.XNameAccess Interface

An example of the use of XNameAccess is provided by the sheet object of a
spreadsheet. It combines all the pages within the spreadsheet. The individual
pages are accessed using the getByName method from XNameAccess: 

Dim Sheets As Object

Dim Sheet As Object

Sheets = Spreadsheet.Sheets

Sheet = Sheets.getByName("Sheet1")

The getElementNames method provides an overview of the names of all
elements. As a result, it returns a data field containing the names. The following
example shows how all element names of a spreadsheet can thereby be
determined and displayed in a loop: 

Dim Sheets As Object

Dim SheetNames

Dim I As Integer

Sheets = Spreadsheet.Sheets

SheetNames = Sheets.getElementNames

For I=LBound(SheetNames) To UBound(SheetNames)

MsgBox SheetNames(I)

Next I

The hasByName method of the XNameAccess interface reveals whether a
subordinate object with a particular name exists within the basic object. The
following example therefore displays a message that informs the user whether the
Spreadsheet object contains a page of the name Sheet1.

84   OpenOffice.org  Basic  Programmer's  Guide



Dim Sheets As Object

Sheets = Spreadsheet.Sheets

If Sheets.HasByName("Sheet1") Then

MsgBox " Sheet1 available"

Else

MsgBox "Sheet1 not available"

End If

com.sun.star.container.XNameContainer Interface

The XNameContainer interface takes on the insertion, deletion and modification
of subordinate elements in a basic object. The functions responsible are
insertByName, removeByName and replaceByName. 

The following is a practical example of this.  It calls a text document, which
contains a StyleFamilies object and uses this to in turn make the paragraph
templates (ParagraphStyles) of the document available. 

Dim StyleFamilies As Objects

Dim ParagraphStyles As Objects

Dim NewStyle As Object

StyleFamilies = Textdoc.StyleFamilies

ParagraphStyles = StyleFamilies.getByName("ParagraphStyles")

ParagraphStyles.insertByName("NewStyle", NewStyle)

ParagraphStyles.replaceByName("ChangingStyle", NewStyle)

ParagraphStyles.removeByName("OldStyle")

The insertByName line inserts the NewStyle style under the name of the same
name in the ParagraphStyles object. The replaceByName line changes the
object behind ChangingStyle into NewStyle. Finally, the removeByName call
removes the object behind OldStyle from ParagraphStyles.

Chapter 4   Introduction  to the StarOffice API  85



Index-Based Access to Subordinate Objects
The XIndexAccess and XIndexContainer interfaces are used in objects which
contain subordinate objects and which can be addressed using an index. 

XIndexAccess provides the methods for accessing individual objects. 
XIndexContainer provides methods for inserting and removing elements.

com.sun.star.container.XIndexAccess Interface

XIndexAccess provides the getByIndex and getCount methods for calling
the subordinate objects. getByIndex provides an object with a particular index.
getCount returns how many objects are available. 

Dim Sheets As Object

Dim Sheet As Object

Dim I As Integer

Sheets = Spreadsheet.Sheets

For I = 0 to Sheets.getCount() - 1

Sheet = Sheets.getByIndex(I)

' Editing sheet

Next I

The example shows a loop that runs through all sheet elements one after another
and saves a reference to each in the Sheet object variable. When working with the
indexes, note that getCount returns the number of elements. The elements in
getByIndex however are numbered beginning with 0. The counting variable of
the loop therefore runs from 0 to getCount()-1.

com.sun.star.container.XIndexContainer Interface

The XIndexContainer interface provides the insertByIndex and
removeByIndex functions. The parameters are structured in the same way as the
corresponding functions in XNameContainer.

86   OpenOffice.org  Basic  Programmer's  Guide



Iterative Access to Subordinate Objects
In some instances, an object may contain a list of subordinate objects that cannot
be addressed by either a name or an index. In these situations, the XEnumeration
and XenumerationAccess interfaces are appropriate. They provide a
mechanism through which all subordinate elements of an objects can be passed,
step by step, without having to use direct addressing. 

com.sun.star.container.XEnumeration and 
XenumerationAccess Interfaces

The basic object must provide the XEnumerationAccess interface, which
contains only a createEnumeration method. This returns an auxiliary object,
which in turn provides the XEnumeration interface with the hasMoreElements
and nextElement methods. Through these, you then have access to the
subordinate objects. 

The following example steps through all the paragraphs of a text:

Dim ParagraphEnumeration As Object

Dim Paragraph As Object

ParagraphEnumeration = Textdoc.Text.createEnumeration

While ParagraphEnumeration.hasMoreElements()

Paragraph = ParagraphElements.nextElement()

Wend

The example first creates a ParagraphEnumeration auxiliary object. This
gradually returns the individual paragraphs of the text in a loop. The loop is
terminated as soon as the hasMoreElements method returns the False value,
signaling that the end of the text has been reached.

Chapter 4   Introduction  to the StarOffice API  87



88   OpenOffice.org  Basic  Programmer's  Guide



5 Working with StarOffice Documents
The StarOffice API has been structured so that as many of its parts as possible can
be used universally for different tasks. This includes the interfaces and services for
creating, opening, saving, converting, and printing documents and for template
administration. Since these function areas are available in all types of documents,
they are explained first in this chapter.

The StarDesktop
When working with documents, there are two services which are used most
frequently: 

 The com.sun.star.frame.Desktop service, which is similar to the core
service of StarOffice. It provides the functions for the frame object of StarOffice,
under which all document windows are classified. Documents can also be
created, opened and imported using this service. 

 The basic functionality for the individual document objects is provided by the
com.sun.star.document.OfficeDocument service. This provides the
methods for saving, exporting and printing documents.

The com.sun.star.frame.Desktop service opens automatically when
StarOffice is started. To do this, StarOffice creates an object which can be reached
by means of the global name StarDesktop. 

The most important interface of the StarDesktop is com.sun.star.frame.
XComponentLoader. This basically covers the loadComponentFromURL
method, which is  responsible for creating, importing and opening documents.

89

CHAPTER  5



The name of the StarDesktop object  dates back to StarOffice 5, in which  all

document  windows  were embedded in one common  application  called
StarDesktop.  In the present  version  of StarOffice, a visible  StarDesktop  is no
longer  used. The name StarDesktop  was, however, retained for  the frame object  of
StarOffice because it  clearly  indicates  that this  is a basic  object  for  the entire
application.  

The StarDesktop object  assumes the position  of successor  to the Application

object  of StarOffice 5 which  previously  applied  as a root  object.  Unlike the old
Application object  however it  is  primarily  responsible  for  opening  new

documents.  The functions  resident  in the old  Application object  for  controlling

the on-screen depiction  of StarOffice (for  example, FullScreen,

FunctionBarVisible, Height, Width, Top, Visible) are no longer  used.

Whereas the active document  in Word is accessed through  
Application.ActiveDocument and in Excel  through  

Application.ActiveWorkbook, in StarOff ice, the StarDesktop is responsible

for  this  task. The active document  object  is accessed in StarOffice 7 through  the
StarDesktop.CurrentComponent property.

Basic Information about Documents in StarOffice
When working with StarOffice documents, it is useful to deal with some of the
basic issues of document administration in StarOffice. This includes the way in
which file names are structured for StarOffice documents, as well as the format in
which files are saved.

File Names in URL Notation

Since StarOffice is a platform-independent application, it uses URL notation
(which is independent of any operating system), as defined in the Internet
Standard RFC 1738 for file names. Standard file names using this system begin
with the prefix

file:///

followed by the local path. If the file name contains sub-directories, then these are
separated by a  single forward slash., not with a backslash usually used under

90   OpenOffice.org  Basic  Programmer's  Guide



Windows. The following path references the test.sxw file in the doc directory
on the C drive:.

file:///C:/doc/test.sxw

To covert local file names into an URL, StarOffice provides the ConvertToUrl
function. 
To convert an URL into a local file name, StarOffice provides the
ConvertFromUrl function: 

MsgBox ConvertToUrl("C:\doc\test.sxw") 

' supplies file:///C:/doc/test.sxw

MsgBox ConvertFromUrl("file:///C:/doc/test.sxw") 

'  supplies (under Windows) c:\doc\test.sxw

The example converts a local file name into a URL and displays it in a message
box. It then converts a URL into a local file name and also displays this. 

The Internet Standard RFC 1738, upon which this is based, permits use of the 0-9,
a-z, and A-Z characters. All other characters are inserted as escape coding in
the URLs. To do this, they are converted into their hexadecimal value in the ISO
8859-1 (ISO-Latin) set of characters and are preceded by a percent sign. A space in
a local file name therefore, for example, becomes a %20 in the URL.

XML File Format

Since Version 6.0, StarOffice provides an XML-based file format. Through the use
of XML, the user has the option of also opening and editing files in other
programs. 

Compression of Files

Since XML is based on standard text files, the resultant files are usually very large.
StarOffice therefore compresses the files and saves them as a ZIP file. By means of
a storeAsURL method option, the user can save the original XML files directly.
See  storeAsURL Method Options on page 97.

Chapter 5   Working  with  StarOffice Documents   91



Creating, Opening and Importing Documents
Documents are opened, imported and created using the method 

StarDesktop.loadComponentFromURL(URL, Frame, _

SearchFlags, FileProperties)

The first parameter of loadComponentFromURL specifies the URL of the
associated file. 

As the second parameter, loadComponentFromURL expects a name for the
frame object of the window that StarOffice creates internally for its administration.
The predefined _blank name is usually specified here, and this ensures that
StarOffice creates a new window. Alternatively, _hidden can also be specified,
and this ensures that the corresponding document is loaded but remains invisible. 

Using these parameters, the user can open a StarOffice document, since place
holders (dummy values) can be assigned to the last two parameters:

Dim Doc As Object

Dim Url As String

Dim Dummy() 

Url = "file:///C:/test.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy())

The preceding call opens the text.sxw file and displays this in a new window. 

Any number of documents can be opened in this way in StarOffice Basic and then
edited using the returned document objects.

StarDesktop.loadComponentFromURL supersedes  the Documents.Add and

Documents.Open methods  from the old  StarOffice API.

Replacing the Content of the Document Window

The named _blank and _hidden values for the Frame parameter ensure that
StarOffice creates a new window for every call from loadComponentFromURL.
In some situations, it is useful to replace the content of an existing window. In this
case, the frame object of the window should contain an explicit name. Note that

92   OpenOffice.org  Basic  Programmer's  Guide



this name must not begin with an underscore. Furthermore, the SearchFlags
parameter must be set so that the corresponding framework is created, if it does
not already exist. The corresponding constant for SearchFlags is:

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _

com.sun.star.frame.FrameSearchFlag.ALL

The following example shows how the content of an opened window can be
replaced with the help of the frame parameter and SearchFlags: 

Dim Doc As Object

Dim Dummy() 

Dim Url As String

Dim SearchFlags As Long

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _

com.sun.star.frame.FrameSearchFlag.ALL

Url = "file:///C:/test.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", _

SearchFlags, Dummy)

MsgBox "Press OK to display the second document."

Url = "file:///C:/test2.sxw"

Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", _

SearchFlags, Dummy)

The example first opens the test.sxw file in a new window with the frame name
of MyFrame. Once the message box has been confirmed, it replaces the content of
the window with the test2.sxw file.

loadComponentFromURL Method Options

The fourth parameter of the loadComponentFromURL function is a
PropertyValue data field.  which provides StarOffice with various options for
opening and creating documents. The data field must provide a PropertyValue
structure for each option in which the name of the option is saved as a string as
well as the associated value. 

loadComponentFromURL supports the following options:

Chapter 5   Working  with  StarOffice Documents   93



 AsTemplate (Boolean) – if true, loads a new, untitled document from the
given URL. If is false, template files are loaded for editing.

 CharacterSet (String) – defines which set of characters a document is
based on.

 FilterName (String) – specifies a special filter for the
loadComponentFromURL function. The filter names available are defined in the
\share\config\registry\instance\org\

openoffice\office\TypeDetection.xml file.

 FilterOptions (String) – defines additional options for filters.

 JumpMark (String) – once a document has been opened, jumps to the
position defined in JumpMark.

 Password (String) – transfers a password for a protected file.

 ReadOnly (Boolean) – loads a read-only document.

The following example shows how a text file separated by a comma in StarOffice
Calc can be opened using the FilterName option. 

Dim Doc As Object

Dim FileProperties(0) As New com.sun.star.beans.PropertyValue

Dim Url As String

Url = "file:///C:/csv.doc"

FileProperties(0).Name = "FilterName"

FileProperties(0).Value ="scalc: Text - txt - csv (StarOffice Calc)"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, FileProperties())

The FileProperties data field covers precisely one value because it records one
option. 
The Filtername property defines whether StarOffice uses a StarOffice Calc text
filter to open files.

Creating New Documents

StarOffice automatically creates a new document if the document specified in the
URL is a template. 

94   OpenOffice.org  Basic  Programmer's  Guide



Alternatively, if only an empty document without any adaptation is needed, a
private:factory-URL can be specified:

Dim Dummy() 

Dim Url As String

Dim Doc As Object

Url = "private:factory/swriter"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy())

The call creates an empty StarOffice writer document.

Document Objects
The loadComponentFromURL function introduced in the previous section
returns a document object. This supports the
com.sun.star.document.OfficeDocument service, which in turn provides
two central interfaces: 

 the com.sun.star.frame.XStorable interface, which is responsible for
saving documents and 

 the com.sun.star.view.XPrintable interface, which contains the
methods for printing documents. 

When changing  over to StarOffice 7, you  will  find  that the functional  scope of the
document  objects  has remained the same for  the most  part. The document
objects,  for  example, still  provide methods  for  saving  and printing  documents.  The
names and parameters  of the methods  have, however, changed.

Saving and Exporting Documents

StarOffice documents are saved directly through the document object. The store
method of the com.sun.star.frame.XStorable interface is available for this
purpose:

Doc.store()

This call functions provided that the document has already been assigned a
memory space. This is not the case for new documents. In this instance, the
storeAsURL method is used. This method is also defined in

Chapter 5   Working  with  StarOffice Documents   95



com.sun.star.frame.XStorable and can be used to define the location of the
document: 

Dim URL As String

Dim Dummy()

Url = "file:///C:/test3.sxw"

Doc.storeAsURL(URL, Dummy())

In addition to the preceding methods,
com.sun.star.frame.XStorable also provides some help methods
which are useful when saving documents. These are:

 hasLocation() – specifies whether the document has already been assigned
a URL.

 isReadonly() - specifies whether a document has read-only protection.

 isModified() - specifies whether a document has been modified since it was
last saved.

The code for saving a document can be extended by these options so that the
document is only saved if the object has actually been modified and the file name
is only queried if it is actually needed:

If (Doc.isModified) Then

If (Doc.hasLocation And (Not Doc.isReadOnly)) Then

Doc.store()

Else

Doc.storeAsURL(URL, Dummy())

End If

End If

The example first checks whether the relevant document has been modified since
it was last saved. It only continues with the saving process if this is the case. If the
document has already been assigned a URL and is not a read-only document, it is
saved under the existing URL. If it does not have a URL or was opened in its read-
only status, it is saved under a new URL.

96   OpenOffice.org  Basic  Programmer's  Guide



storeAsURL Method Options

As with the loadComponentFromURL method, some options can also be
specified in the form of a PropertyValue data field using the storeAsURL
method. These determine the procedure StarOffice uses when saving a document.
storeAsURL provides the following options:

 CharacterSet (String) – defines which set of characters a document is
based on.

 FilterName (String) – specifies a special filter for the
loadComponentFromURL function. The filter names available are defined in the
\share\config\registry\instance\org\

openoffice\office\TypeDetection.xml file.

 FilterOptions (String) – defines additional options for filters.

 Overwrite (Boolean) – allows a file which already exists to be overwritten
without a query.

 Password (String) – transfers the password for a protected file.

 Unpacked (Boolean) – saves the document (not compressed) in sub-
directories.

The following example shows how the Overwrite option can be used in
conjunction with storeAsURL:

Dim Doc As Object

Dim FileProperties(0) As New com.sun.star.beans.PropertyValue

Dim Url As String

' ... Initialize Doc 

Url = "file:///c:/test3.sxw"

FileProperties(0).Name = "Overwrite"

FileProperties(0).Value = True

Doc.storeAsURL(sUrl, mFileProperties())

The example then saves Doc under the specified file name if a file already exists
under the name.

Chapter 5   Working  with  StarOffice Documents   97



Printing Documents

Similar to saving, documents are printed out directly by means of the document
object. The Print method of the com.sun.star.view.Xprintable interface
is provided for this purpose. 
In its simplest form, the print call is:

Dim Dummy()

Doc.print(Dummy())

As in the case of the loadComponentFromURL method, the Dummy parameter is a
PropertyValue data field through which StarOffice can specify several options
for printing.

The options of the print method

The print method expects a PropertyValue data field as a parameter, which
reflects the settings of the print dialog of StarOffice: 

 CopyCount (Integer) – specifies the number of copies to be printed.

 FileName (String) – prints the document in the specified file.

 Collate (Boolean) – advises the printer to collate the pages of the copies.

 Sort (Boolean) – sorts the pages when printing out several copies
(CopyCount > 1).

 Pages (String) – contains the list of the pages to be printed (syntax as
specified in print dialog).

The following example shows how several pages of a document can be printed out
using the Pages option: 

Dim Doc As Object

Dim PrintProperties(0) As New com.sun.star.beans.PropertyValue

PrintProperties(0).Name="Pages"

PrintProperties(0).Value="1-3; 7; 9"

Doc.print(PrintProperties())

98   OpenOffice.org  Basic  Programmer's  Guide



Printer selection and settings

The com.sun.star.view.XPrintable interface provides the Printer
property, which selects the printer. This property receives a PropertyValue data
field with the following settings: 

 Name (String) – specifies the name of printer.

 PaperOrientation (Enum) – specifies the paper orientation
(com.sun.star.view.PaperOrientation.PORTRAIT value for portrait
format, com.sun.star.view.PaperOrientation.LANDSCAPE for landscape
format).

 PaperFormat (Enum) – specifies the paper format (for example,
com.sun.star.view.PaperFormat.A4 for DIN A4 or
com.sun.star.view.PaperFormat.Letter for US letters).

 PaperSize (Size) – specifies the paper size in hundredths of a millimeter.

The following example shows how a printer can be changed and the paper size set
with the help of the Printer property. 

Dim Doc As Object

Dim PrinterProperties(1) As New com.sun.star.beans.PropertyValue

Dim PaperSize As New com.sun.star.awt.Size

PaperSize.Width = 20000 ' corresponds to 20 cm

PaperSize.Height = 20000 ' corresponds to 20 cm

PrinterProperties (0).Name="Name"

PrinterProperties (0).Value="My HP Laserjet"

PrinterProperties (1).Name="PaperSize"

PrinterProperties (1).Value=PaperSize

Doc.Printer = PrinterProperties()

The example defines an object named PaperSize with the
com.sun.star.awt.Size type. This is needed to specify the paper size.
Furthermore, it creates a data field for two PropertyValue entries named
PrinterProperties. This data field is then initialized with the values to be set
and assigned the Printer property. From the standpoint of UNO, the printer is
not a real property but an imitated one.

Chapter 5   Working  with  StarOffice Documents   99



Templates
Templates are named lists containing formatting attributes. They move through all
applications of StarOffice and help to significantly simplify formatting. If the user
changes one of the attributes of a template, then StarOffice automatically adjusts
all document sections depending on the attribute. The user can therefore, for
example, change the font type of all level one headers by means of a central
modification in the document. Depending on the relevant document types,
StarOffice recognizes a whole range of different types of template. 

StarOffice Writer supports

 character templates,

 paragraph templates,

 frame templates,

 page templates

 numbering templates

StarOffice Calc supports

 cell template

 page templates

StarOffice Impress supports

 character element templates

 presentation templates

In StarOffice terminology, the different types of templates are called
StyleFamilies in accordance with the com.sun.star.style.StyleFamily
service on which they are based. 
The StyleFamilies are accessed by means of the document object:

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim CellStyles As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

100   OpenOffice.org  Basic  Programmer's  Guide



CellStyles = StyleFamilies.getByName("CellStyles")

The example uses the StyleFamilies property of a spreadsheet document to
establish a list containing all available cell templates. 

The individual templates can be accessed directly by means of an index: 

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim CellStyles As Object

Dim CellStyle As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

CellStyles = StyleFamilies.getByName("CellStyles")

For I = 0 To CellStyles.Count - 1

CellStyle = CellStyles(I)

MsgBox CellStyle.Name

Next I

The loop added since the previous example displays the names of all cell
templates one after another in a message box.

Details about various formatting options
Each type of template provides a whole range of individual formatting properties.
Here is an overview of the most important formatting properties and the points at
which they are explained:

 Character properties, Chapter 6, Text Documents, 
com.sun.star.style.CharacterProperties service

 Paragraph properties, Chapter 6, Text Documents, 
com.sun.star.text.Paragraph service

 Cell properties, Chapter 7, Spreadsheet Documents,
com.sun.star.table.CellProperties service

Chapter  5   Working  with  StarOffice Documents   101



 Page properties, Chapter 7, Spreadsheet Documents,
com.sun.star.style.PageStyle service

 Character element properties, Chapter 7, Spreadsheet Documents,
Various services

The format properties are by no means restricted to the applications in which
these are explained, but instead can be used universally. For example, most of the
page properties described in Chapter 7 can therefore be used not only in
StarOffice Calc, but also in StarOffice Writer.

More information about working with templates can be found in the Default values
for character and paragraph properties section in Chapter 6, Text Documents.

102   OpenOffice.org  Basic  Programmer's  Guide



6 Text Documents
In addition to pure strings, text documents also contain formatting information.
These may appear at any point in the text. The structure is further complicated by
tables. These include not only single-dimensional strings, but also two-
dimensional fields. Most word processing programs now finally provide the
option of placing drawing objects, text frames and other objects within a text.
These may be outside the flow of text and can be positioned anywhere on the
page.

This chapter presents the central interfaces and services of text documents. The
first section deals with the anatomy of text documents and concentrates on how a
StarOffice Basic program can be used to take iterative steps through a StarOffice
document. It focuses on paragraphs, paragraph portions and their formatting.

The second section focuses on efficiently working with text documents. For this
purpose, StarOffice provides several help objects, such as the TextCursor object,
which extend beyond those specified in the first section.

The third section moves beyond work with texts. It concentrates on tables, text
frames, text fields, bookmarks, content directories and more.

Information about how to create, open, save and print documents is described in
Chapter 5, because it can be used not only for text documents, but also for other
types of document.

103

CHAPTER  6



The Structure of Text Documents
A text document can essentially contain four types of information:

 the actual text

 templates for formatting characters, paragraphs, and pages 

 non-text elements such as tables, graphics and drawing objects

 global settings for the text document

This section concentrates especially on the text and associated formatting options.

The design  of the StarOffice 7 API for  StarOffice Writer  differs  from that of the
previous  version.  The old  API version  concentrated  on work  with  the Selection

object,  which  was heavily  oriented  towards  the idea of the user interface for  end
users, which  focused  on mouse-controlled  highlighting  work.  

The StarOffice 7 API has replaced these connections  between user interface and
programmer  interface. The programmer  therefore has parallel  access  to all parts  of
an application  and can work  with  objects  from different  sub-sections  of a
document  at the same time. The old  Selection objec t is  no longer  available.

Paragraphs and Paragraph Portions
The core of a text document consists of a sequence of paragraphs. These are
neither named nor indexed and there is therefore no possible way of directly
accessing individual paragraphs. The paragraphs can however be sequentially
traversed with the help of the Enumeration object described in Chapter 4. This
allows the paragraphs to be edited.

When working with the Enumeration object, one special scenario should,
however, be noted: 
it not only returns paragraphs, but also tables (strictly speaking, in StarOffice
Writer, a table is a special type of paragraph). Before accessing a returned object,
you should therefore check whether the returned object supports the
com.sun.star.text.Paragraph service for paragraphs or the
com.sun.star.text.TextTable service for tables.

104   OpenOffice.org  Basic  Programmer's  Guide



The following example traverses the contents of a text document in a loop and
uses a message in each instance to inform the user whether the object in question is
a paragraph or table.

Dim Doc As Object

Dim Enum As Object

Dim TextElement As Object

' Create document object

Doc = StarDesktop.CurrentComponent

' Create enumeration object 

Enum = Doc.Text.createEnumeration

' loop over all text elements

While Enum.hasMoreElements

TextElement = Enum.nextElement

If TextElement.supportsService("com.sun.star.text.TextTable") Then

MsgBox "The current block contains a table."

End If

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

MsgBox "The current block contains a paragraph."

End If

Wend

The example creates a Doc document object which references the current
StarOffice document. With the aid of Doc, the example then creates an
Enumeration object that traverses through the individual parts of the text
(paragraphs and tables) and assigns the current element to TextElement object.
The example uses the supportsService method to check whether the
TextElement is a paragraph or a table.

Chapter 6   Text Documents   105



Paragraphs

The com.sun.star.text.Paragraph service grants access to the content of a
paragraph. The text in the paragraph can be retrieved and modified using the
String property:

Dim Doc As Object

Dim Enum As Object

Dim TextElement As Object

Doc = StarDesktop.CurrentComponent

Enum = Doc.Text.createEnumeration

While Enum.hasMoreElements

TextElement = Enum.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

TextElement.String = Replace(TextElement.String, "you", "U") 

TextElement.String = Replace(TextElement.String, "too", "2")

TextElement.String = Replace(TextElement.String, "for", "4") 

End If

Wend

The example opens the current text document and passes through it with the help
of the Enumeration object. It uses the TextElement.String property in all
paragraphs to access the relevant paragraphs and replaces the you, too and for
strings with the U, 2 and 4 characters. 
The Replace function used for replacing does not fall within the standard
linguistic scope of StarOffice Basic. This is an instance of the example function
described in Chapter 3 in the Search and Replace section.

The content  of the procedure described  here for  accessing  the paragraphs  of a
text  is comparable with  the Paragraphs listing  used in VBA, which  is provided  in

the Range and Document objects  available there. Whereas in VBA the paragraphs

are accessed by their  number  (for  example, by the Paragraph(1) call), in

StarOffice Basic,  the Enumeration object  described  previously  should  be used. 

106   OpenOffice.org  Basic  Programmer's  Guide



There is no direct  counterpart  in StarOffice Basic  for  the Characters, Sentences

and Words lists  provided  in VBA. You do, however, have the option  of switching  to

a TextCursor which  allows  for  navigation  at the level  of characters,  sentences

and words  (refer to The TextCursor ). 

Paragraph Portions

The previous example may change the text as requested, but it may sometimes
also destroy the formatting.

This is because a paragraph in turn consists of individual sub-objects. Each of
these sub-objects contains its own formatting information. If the center of a
paragraph, for example, contains a word printed in bold, then it will be
represented in StarOffice by three paragraph portions: the portion before the bold
type, then the word in bold, and finally the portion after the bold type, which is
again depicted as normal.

If the text of the paragraph is now changed using the paragraph’s String
property, then StarOffice first deletes the old paragraph portions and inserts a
new paragraph portion. The formatting of the previous sections is then lost.

To prevent this effect, the user can access the associated paragraph portions rather
than the entire paragraph. Paragraphs provide their own Enumeration object for
this purpose. The following example shows a double loop which passes over all
paragraphs of a text document and the paragraph portions they contain and
applies the replacement processes from the previous example:

Dim Doc As Object

Dim Enum1 As Object

Dim Enum2 As Object

Dim TextElement As Object

Dim TextPortion As Object

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Chapter 6   Text Documents   107



Enum2 = TextElement.createEnumeration

' loop over all sub-paragraphs 

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

MsgBox "'" & TextPortion.String & "'"

TextPortion.String = Replace(TextPortion.String, "you", "U") 

TextPortion.String = Replace(TextPortion.String, "too", "2")

TextPortion.String = Replace(TextPortion.String, "for", "4") 

Wend

End If

Wend

The example runs through a text document in a double loop. The outer loop refers
to the paragraphs of the text. The inner loop processes the paragraph portions in
these paragraphs. The example code modifies the content in each of these
paragraph portions using the String property of the string. as is the case in the
previous example for paragraphs. Since however, the paragraph portions are
edited directly, their formatting information is retained when replacing the string.

Formatting

There are various ways of formatting text. The easiest way is to assign the format
properties directly to the text sequence. This is called direct formatting. Direct
formatting is used in particular with short documents because the formats can be
assigned by the user with the mouse. You can, for example, highlight a certain
word within a text using bold type or center a line.

In addition to direct formatting, you can also format text using templates. This is
called indirect formatting. With indirect formatting, the user assigns a pre-defined
template to the relevant text portion. If the layout of the text is changed at a later
date, the user only needs to change the template. StarOffice then changes the way
in which all text portions which use this template are depicted.

In VBA, the formatting  properties  of an object  are usually  spread over a range of sub-
objects  (for example, Range.Font, Range.Borders, Range.Shading, 

Range.ParagraphFormat). The properties  are accessed by means of cascading

expressions  (for example, Range.Font.AllCaps). In StarOffice Basic, the formatting

108   OpenOffice.org  Basic  Programmer's  Guide



properties  on the other hand are available directly, using the relevant objects
(TextCursor, Paragraph, and so on). You will  find an overview of the character and

paragraph properties  available in StarOffice in the following  two sections .

In the old  StarOffi ce API, a text  was essentially  formatted  using  the Selection

object  and its  subordinate objects  (for example, Selection.Font,

Selection.Paragraph and Selection.Border). In the new API, the formatting

properties  can be found  in each object  (Paragraph, TextCursor, and so on) and

can be applied directly.  A list  of the character  and paragraph  properties  available
can be found  in the following  paragraphs.

Character Properties

Those format properties that refer to individual characters are described as
character properties. These include bold type and the font type. Objects that allow
character properties to be set have to support the 
com.sun.star.style.CharacterProperties service. StarOffice recognizes
a whole range of services that support this service. These include the previously
described com.sun.star.text.Paragraph services for paragraphs as well as
the com.sun.star.text.TextPortion services for paragraph portions.

The com.sun.star.style.CharacterProperties service does not provide
any interfaces, but instead offers a range of properties through which character
properties can be defined and called. A complete list of all character properties can
be found in the StarOffice API reference. The following list describes the most
important properties:

 CharFontName (String) – name of font type selected.

 CharColor (Long) – text color.

 CharHeight (Float) – character height in points (pt). 

 CharUnderline (Constant group) – type of underscore (constants in
accordance with com.sun.star.awt.FontUnderline).

 CharWeight (Constant group) – font weight(constants in accordance
with com.sun.star.awt.FontWeight).

Chapter 6   Text Documents   109



 CharBackColor (Long) – background color.

 CharKeepTogether (Boolean) – suppression of automatic line break.

 CharStyleName (String) – name of character template.

Paragraph Properties

Formatting information that does not refer to individual characters, but to the
entire paragraph is considered to be a paragraph property. This includes the
distance of the paragraph from the edge of the page as well as line spacing. The
paragraph properties are available through the com.sun.star.style.
ParagraphProperties service.

Even the paragraph properties are available in various objects. All objects that
support the com.sun.star.text.Paragraph service also provide support for
the paragraph properties in com.sun.star.style.ParagraphProperties. 

A complete list of the paragraph properties can be found in the StarOffice API
reference. The most common paragraph properties are:

 ParaAdjust (enum) – vertical text orientation (constants in accordance with
com.sun.star.style.ParagraphAdjust).

 ParaLineSpacing (struct) – line spacing (structure in accordance with
com.sun.star.style.LineSpacing).

 ParaBackColor (Long) – background color.

 ParaLeftMargin (Long) – left margin in 100ths of a millimeter.

 ParaRightMargin (Long) – right margin in 100ths of a millimeter.

 ParaTopMargin (Long) – top margin in 100ths of a millimeter.

 ParaBottomMargin (Long) – bottom margin in 100ths of a millimeter.

 ParaTabStops (Array of struct) – type and position of tabs (array
with structures of the Typs com.sun.star.style.TabStop).

 ParaStyleName (String) – name of the paragraph template.

110   OpenOffice.org  Basic  Programmer's  Guide



Example: simple HTML export

The following example demonstrates how to work with formatting information. It
iterates through a text document and creates a simple HTML file. Each paragraph
is recorded in its own HTML element <P> for this purpose. Paragraph portions
displayed in bold type are marked using a <B> HTML element when exporting.

Dim FileNo As Integer, Filename As String, CurLine As String

Dim Doc As Object

Dim Enum1 As Object, Enum2 As Object

Dim TextElement As Object, TextPortion As Object

Filename = "c:\text.html"

FileNo = Freefile

Open Filename For Output As #FileNo

Print #FileNo, "<HTML><BODY>"

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Enum2 = TextElement.createEnumeration

CurLine = "<P>"

' loop over all paragraph portions

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

If TextPortion.CharWeight = com.sun.star.awt.FontWeight.BOLD THEN

CurLine = CurLine & "<B>" & TextPortion.String & "</B>"

Else

CurLine = CurLine & TextPortion.String

End If

Wend

' output the line

CurLine = CurLine & "</P>"

Print #FileNo, CurLine

End If

Wend

Chapter 6   Text Documents   111



' write HTML footer 

Print #FileNo, "</BODY></HTML>"

Close #FileNo

The basic structure of the example is oriented towards the examples for running
though the paragraph portions of a text already discussed previously. The
functions for writing the HTML file, as well as a test code that checks the font
weight of the corresponding text portions and provides paragraph portions in
bold type with a corresponding HTML tag, have been added.

Default values for character and paragraph properties

Direct formatting always takes priority over indirect formatting. In other words,
formatting using templates is assigned a lower priority than direct formatting in a
text.

Establishing whether a section of a document has been directly or indirectly
formatted is not easy. The symbol bars provided by StarOffice show the common
text properties such as font type, weight and size. However, whether the
corresponding settings are based on template or direct formatting in the text is still
unclear.

StarOffice Basic provides the getPropertyState method, with which
programmers can check how a certain property was formatted. As a parameter,
this takes the name of the property and returns a constant that provides
information about the origin of the formatting. The following responses, which are
defined in the com.sun.star.beans.PropertyState enumeration, are
possible:

 com.sun.star.beans.PropertyState.DIRECT_VALUE – the property is
defined directly in the text (direct formatting),

 com.sun.star.beans.PropertyState.DEFAULT_VALUE – the property is
defined by a template (indirect formatting)

 com.sun.star.beans.PropertyState.AMBIGUOUS_VALUE – the
property is unclear. 
This status arises, for example, when querying the bold type property of a

112   OpenOffice.org  Basic  Programmer's  Guide



paragraph, which includes both words depicted in bold and words depicted in
normal font.

The following example shows how format properties can be edited in StarOffice. It
searches through a text for paragraph portions which have been depicted as bold
type using direct formatting. If it encounters a corresponding paragraph portion,
it deletes the direct formatting using the setPropertyToDefault method and
assigns a MyBold character template to the corresponding paragraph portion.

Dim Doc As Object

Dim Enum1 As Object

Dim Enum2 As Object

Dim TextElement As Object

Dim TextPortion As Object

Doc = StarDesktop.CurrentComponent

Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs

While Enum1.hasMoreElements

TextElement = Enum1.nextElement

If TextElement.supportsService("com.sun.star.text.Paragraph") Then

Enum2 = TextElement.createEnumeration

' loop over all paragraph portions

While Enum2.hasMoreElements

TextPortion = Enum2.nextElement

If TextPortion.CharWeight = _

  com.sun.star.awt.FontWeight.BOLD AND _

  TextPortion.getPropertyState("CharWeight") = _

  com.sun.star.beans.PropertyState.DIRECT_VALUE Then

TextPortion.setPropertyToDefault("CharWeight")

TextPortion.CharStyleName = "MyBold" 

End If

Wend

End If

Wend

Chapter 6   Text Documents   113



Editing Text Documents
The previous section has already discussed a whole range of options for editing
text documents,  focusing on the com.sun.star.text.TextPortion and
com.sun.star.text.Paragraph services,which grant access to paragraph
portions as well as paragraphs. These services are appropriate for applications in
which the content of a text is to be edited in one pass through a loop. However,
this is not sufficient for many problems. StarOffice provides the
com.sun.star.text.TextCursor service for more complicated tasks,
including navigating backward within a document or navigating based on
sentences ad words rather than TextPortions.

The TextCursor
A TextCursor in the StarOffice API is comparable with the visible cursor used in
a StarOffice document. It marks a certain point within a text document and can be
navigated in various directions through the use of commands. The TextCursor
objects available in StarOffice Basic should not, however, be confused with the
visible cursor. These are two very different things.

Warning!  Terminology  differs  from that used in VBA: In terms  of scope of function,
the Range object  from VBA can be compared with  the TextCursor object  in

StarOffice and not  – as the name possibly  suggests  – with  the Range object  in

StarOffice.

The TextCursor object  in StarOffice, for example, provides  methods  for navigating

and changing  text  which  are included in the Range object  in VBA (for example, 

MoveStart, MoveEnd, InsertBefore, InsertAfter). The corresponding

counterparts  of the TextCursor object  in StarOffice are described  in the following

sections.

Navigating within a Text

The TextCursor object in StarOffice Basic acts independently from the visible
cursor in a text document. A program-controlled position change of a
TextCursor object has no impact whatsoever on the visible cursor. Several

114   OpenOffice.org  Basic  Programmer's  Guide



TextCursor objects can even be opened for the same document and used in
various positions, which are independent of one another.

A TextCursor object is created using the createTextCursor call:

Dim Doc As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = TextDocument.Text.createTextCursor()

The Cursor object created in this way supports the
com.sun.star.text.TextCursor service, which in turn provides a whole
range of methods for navigating within text documents. The following example
first moves the TextCursor ten characters to the left and then three characters to
the right:

Cursor.goLeft(10, False)

Cursor.goRight(3, False)

A TextCursor can highlight a complete area. This can be compared with
highlighting a point in the text using the mouse. The False parameter in the
previous function call specifies whether the area passed over with the cursor
movement is highlightet. For example, the TextCursor in the following example 

Cursor.goLeft(10, False)

Cursor.goRight(3, True)

first moves ten characters to the right without highlighting, and then moves back
three characters and highlights this. The area highlighted by the TextCursor
therefore begins after the seventh character in the text and ends after the tenth
character. 

Here are the central methods that the com.sun.star.text.TextCursor
service provides for navigation:

 goLeft (Count, Expand) – jumps Count characters to the left.

 goRight (Count, Expand) – jumps Count characters to the right.

 gotoStart (Expand) – jumps to the start of the text document.

 gotoEnd (Expand) – jumps to the end of the text document.

Chapter 6   Text Documents   115



 gotoRange (TextRange, Expand) – jumps to the specified TextRange-
Objekt.

 gotoStartOfWord (Expand) – jumps to the start of the current word.

 gotoEndOfWord (Expand) – jumps to the end of the current word.

 gotoNextWord (Expand) – jumps to the start of the next word.

 gotoPreviousWord (Expand) – jumps to the start of the previous word.

 isStartOfWord () - returns True if the TextCursor is at the start of a
word. 

 isEndOfWord () - returns True if the TextCursor is at the end of a word. 

 gotoStartOfSentence (Expand) – jumps to the start of the current
sentence.

 gotoEndOfSentence (Expand) – jumps to the end of the current sentence.

 gotoNextSentence (Expand) – jumps to the start of the next sentence.

 gotoPreviousSentence (Expand) – jumps to the start of the previous
sentence.

 isStartOfSentence () - returns True if the TextCursor is at the start of
a sentence.

 isEndOfSentence () - returns True if the TextCursor is at the end of a
sentence.

 gotoStartOfParagraph (Expand) – jumps to the start of the current
paragraph.

 gotoEndOfParagraph (Expand) – jumps to the end of the current
paragraph.

 gotoNextParagraph (Expand) – jumps to the start of the next paragraph. 

 gotoPreviousParagraph (Expand) – jumps to the start of the previous
paragraph. 

 isStartOfParagraph () – returns True if the TextCursor is at the start
of a paragraph. 

 isEndOfParagraph () – returns True if the TextCursor is at the end of a
paragraph. 

116   OpenOffice.org  Basic  Programmer's  Guide



The text is divided into sentences on the basis of sentence symbols. Periods are, for
example, interpreted as symbols indicating the end of sentences.
The Expand parameter is a Boolean value which specifies whether the area passed
over during navigation is to be highlighted. All navigation methods furthermore
return a parameter which specifies whether the navigation was successful or
whether the action was terminated for lack of text.
The following is a list of several methods for editing highlighted areas using a
TextCursor and which also support the com.sun.star.text.TextCursor
service: 

 collapseToStart () – resets the highlighting and positions the
TextCursor at the start of the previously highlighted area.

 collapseToEnd () – resets the highlighting and positions the TextCursor
at the end of the previously highlighted area.

 isCollapsed () – returns True if the TextCursor does not cover any
highlighting at present.

Formatting Text with TextCursor

The com.sun.star.text.TextCursor service supports all the character and
paragraph properties that were presented at the start of this Chapter. 

The following example shows how these can be used in conjunction with a
TextCursor. 
It passes through a complete document and formats the first word of every
sentence in bold type. 

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do 

Cursor.gotoEndOfWord(True)

Cursor.CharWeight = com.sun.star.awt.FontWeight.BOLD

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed 

Chapter 6   Text Documents   117



The example first creates a document object for the text that has just been opened.
Then it iterates through the entire text, sentence by sentence, and highlights each
of the first words and formats this in bold.

Retrieving and Modifying Text Contents

If a TextCursor contains a highlighted area, then this text is available by means
of the String property of the TextCursor object. The following example uses
the String property to display the first words of a sentence in a message box:

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do 

Cursor.gotoEndOfWord(True)

MsgBox Cursor.String

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed 

The first word of each sentence can be modified in the same way using the
String property: 

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Do 

Cursor.gotoEndOfWord(True)

Cursor.String = "Ups"

Proceed = Cursor.gotoNextSentence(False)

Cursor.gotoNextWord(False)

Loop While Proceed 

If the TextCursor contains a highlighted area, an assignment to the String
property replaces this with the new text. If there is no highlighted area, the text is
inserted at the present TextCursor position.

118   OpenOffice.org  Basic  Programmer's  Guide



Inserting Control Codes

In some situations, it is not the actual text of a document, but rather its structure
that needs modifying. StarOffice provides control codes for this purpose. These
are inserted in the text and influence its structure. The control codes are defined in
the com.sun.star.text.ControlCharacter group of constants. The
following control codes are available in StarOffice:

 PARAGRAPH_BREAK – paragraph break.

 LINE_BREAK – line break within a paragraph.

 SOFT_HYPHEN – possible point for syllabification.

 HARD_HYPHEN – obligatory point for syllabification.

 HARD_SPACE – protected space that is not spread out or compressed in
justified text.

To insert the control codes, you need not only the cursor but also the associated
text document objects. The following example inserts a paragraph after the 20th

character of a text:

Dim Doc As Object

Dim Cursor As Object

Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor

Cursor.goRight(20, False)

Doc.Text.insertControlCharacter(Cursor, _

com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)

The False parameter in the call of the insertControlCharacter method
ensures that the area currently highlighted by the TextCursor remains after the
insert operation. If the True parameter is passed here, then
insertControlCharacter replaces the current text.

Chapter 6   Text Documents   119



Searching for Text Portions
In many instances, it is the case that a text is to be searched for a particular term
and the corresponding point needs to be edited. All StarOffice documents provide
a special interface for this purpose, and this interface always functions in
accordance with the same principle: Before a search process, what is commonly
referred to as a SearchDescriptor must first be created. This defines what
StarOffice searches for in a document. A SearchDescriptor is an object which
supports the com.sun.star.util.SearchDescriptor service and can be
created by means of the createSearchDescriptor method of a document: 

Dim SearchDesc As Object

SearchDesc = Doc.createSearchDescriptor

Once the SearchDescriptor has been created, it receives the text to be searched
for:

SearchDesc.searchString="any text"

In terms of its function, the SearchDescriptor is best compared with the search
dialog from StarOffice. In a similar way to the search window, the settings needed
for a search can be set in the SearchDescriptor object. 

The properties are provided by the com.sun.star.util.SearchDescriptor
service: 

 SearchBackwards (Boolean) - searches through the text backward rather
than forward.

 SearchCaseSensitive (Boolean) - takes uppercase and lowercase
characters into consideration during the search.

 SearchRegularExpression (Boolean) - treats the search expression like
a regular expression.

 SearchStyles (Boolean) - searches through the text for the specified
paragraph template.

 SearchWords (Boolean) - only searches for complete words.

120   OpenOffice.org  Basic  Programmer's  Guide



The StarOffice SearchSimilarity (or “fuzzy match”) function is also available
in StarOffice Basic. With this function, StarOffice searches for an expression that
may be similar to but not exactly the same as the search expression. The number of
additional, deleted and modified characters for these expressions can be defined
individually. Here are the associated properties of the
com.sun.star.util.SearchDescriptor service:

 SearchSimilarity (Boolean) - performs a similarity search.

 SearchSimilarityAdd (Short) - number of characters which may be
added for a similarity search.

 SearchSimilarityExchange (Short) - number of characters which may
be replaced as part of a similarity search.

 SearchSimilarityRemove (Short) - number of characters which may be
removed as part of a similarity search.

 SearchSimilarityRelax (Boolean) - takes all deviation rules into
consideration at the same time for the search expression.

Once the SearchDescriptor has been prepared as requested, it can be applied to
the text document. The StarOffice documents provide the findFirst and
findNext methods for this purpose: 

Found = Doc.findFirst (SearchDesc)

Do While Found

Found = Doc.findNext( Found.End, Search)

Loop

The example finds all matches in a loop and returns a TextRange object, which
refers to the found text passage.

Example: Similarity Search 

This example shows how a text can be searched for the word "turnover" and the
results formatted in bold type. A similarity search is used so that not only the
word “turnover”, but also the plural form "turnovers" and declinations such as
"turnover’s" are found. The found expressions differ by up to two letters from the
search expression:

Chapter 6   Text Documents   121



Dim SearchDesc As Object

Dim Doc As Object

Doc = StarDesktop.CurrentComponent

SearchDesc = Doc.createSearchDescriptor

SearchDesc.SearchString="turnover"

SearchDesc.SearchSimilarity = True

SearchDesc.SearchSimilarityAdd = 2

SearchDesc.SearchSimilarityExchange = 2

SearchDesc.SearchSimilarityRemove = 2

SearchDesc.SearchSimilarityRelax = False

Found = Doc.findFirst (SearchDesc)

Do While Found

Found.CharWeight = com.sun.star.awt.FontWeight.BOLD

Found = Doc.findNext( Found.End, Search)

Loop

The basic  idea of search and replace in StarOffice is comparable to that used in
VBA. Both interfaces provide you with  an object,  through  which  the properties  for
searching  and replacing  can be defined. This object  is then applied to the required
text  area in order to perform  the action.  Whereas the responsible  auxiliary  object  in
VBA can be reached through  the Find property  of the Range object, in StarOffice

Basic  it is created by the createSearchDescriptor or

createReplaceDescriptor call  of the document  object. Even the search

properties  and methods  available differ.

As in the old  API from StarOffice, searching  and replacing  text  in the new API is
also performed  using  the document  object.  Whereas previously  there was an
object  called SearchSettings especially  for  defining  the search  options,  in the

new object  searches are now performed  using  a SearchDescriptor or

ReplaceDescriptor object  for  automatically  replacing  text. These objects  cover

not  only  the options,  but  also the current  search  text  and, if  necessary,  the
associated  text  replacement.  The descriptor  objects  are created using  the
document  object,  completed  in accordance with  the relevant  requests,  and then
transferred  back to the document  object  as parameters  for  the search  methods.

122   OpenOffice.org  Basic  Programmer's  Guide



Replacing Text Portions
Just as with the search function, the replacement function from StarOffice is also
available in StarOffice Basic. The two functions are handled identically. A special
object which records the parameters for the process is also first needed for a
replacement process. It is called a ReplaceDescriptor and supports the
com.sun.star.util.ReplaceDescriptor service. All the properties of the
SearchDescriptor described in the previous paragraph are also supported by
ReplaceDescriptor. For example, during a replacement process, case sensitivity
can also be activated and deactivated, and similarity searches can be performed. 

The following example demonstrates the use of ReplaceDescriptors for a
search within a StarOffice document.

Dim I As Long

Dim Doc As Object

Dim Replace As Object

Dim BritishWords(5) As String

Dim USWords(5) As String

BritishWords() = Array("colour", "neighbour", "centre", "behaviour", _

"metre", "through")

USWords() = Array("color", "neighbor", "center", "behavior", _

"meter", "thru")

Doc = StarDesktop.CurrentComponent

Replace = Doc.createReplaceDescriptor

For O = 0 To 5

Replace.SearchString = BritishWords(I)

Replace.ReplaceString = USWords(I)

Doc.replaceAll(Replace)

Next n

The expressions for searching and replacing are set using the SearchString and
ReplaceString properties of the ReplaceDescriptors. The actual
replacement process is finally implemented using the replaceAll method of the
document object, which replaces all occurrences of the search expression. 

Chapter 6   Text Documents   123



Example: searching and replacing text with regular expressions

The replacement function of StarOffice is particularly effective when used in
conjunction with regular expressions. These provide the option of defining a
variable search expression with place holders and special characters rather than a
fixed value. 

The regular expressions supported by StarOffice are described in detail in the
online help section for StarOffice. Here are a few examples:

 A period within a search expression stands for any character. The search
expression sh.rt therefore can stand for both for shirt and for short.

 The character ^ marks the start of a paragraph. All occurrences of the name
Peter that are at the start of a paragraph can therefore be found using the
search expression ^Peter.

 The character $ marks a paragraph end. All occurrences of the name Peter
that are at the end of a paragraph can therefore be found using the search
expression Peter$.

 A * indicates that the preceding character may be repeated any number of
times. It can be combined with the period as a place holder for any character.
The temper.*e expression, for example, can stand for the expressions
temperance and temperature.

The following example shows how all empty lines in a text document can be
removed with the help of the regular expression ^$:

Dim Doc As Object

Dim Replace As Object

Dim I As Long

Doc = StarDesktop.CurrentComponent

Replace = Doc.createReplaceDescriptor

Replace.SearchRegularExpression = True

Replace.SearchString = "^$"

Replace.ReplaceString = ""

Doc.replaceAll(Replace)

124   OpenOffice.org  Basic  Programmer's  Guide



Text Documents: More than Just Text
So far, this chapter has only dealt with text paragraphs and their portions. But text
documents may also contain other objects. These include tables, drawings, text fields
and directories. All of these objects can be anchored to any point within a text. 

Thanks to these common features, all of these objects in StarOffice support a
common basic service called com.sun.star.text.TextContent. This
provides the following properties:

 AnchorType (Enum) – determines the anchor type of a TextContent object
(default values in accordance with
com.sun.star.text.TextContentAnchorType enumeration).

 AnchorTypes (sequence of Enum) – enumeration of all AnchorTypes
which support a special TextContent object.

 TextWrap (Enum) – determines the text wrap type around a TextContent
object (default values in accordance with
com.sun.star.text.WrapTextMode enumeration).

The TextContent objects also share some methods – in particular, those for
creating, inserting and deleting objects.

 A new TextContent object is created using the createInstance method of
the document object.

 An object is inserted using the insertTextContent method of the text
object.

 TextContent objects are deleted using the removeTextContent method.

You will find a range of examples which use these methods in the following
sections.

Chapter 6   Text Documents   125



Tables
The following example creates a table with the help of the createInstance
method described previously.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Once created, the table is set to the number of rows and columns requested using
an initialize call and then inserted in the text document using
insertTextContent.

As can be seen in the example, the insertTextContent method expects not
only the Content object to be inserted, but two other parameters:

 a Cursor object which determines the insert position

 a Boolean variable which specifies whether the Content object is to replace the
current selection of the cursor (True value) or is to be inserted before the
current selection in the text (False)

When creating  and inserting  tables in a text  document,  objects  similar  to those
available in VBA are used in StarOffice Basic:  The document  object  and a
TextCursor object  in StarOffice Basic  or the Range object  as the VBA

counterpart.  Whereas the Document.Tables.Add method  takes on the task of

creating  and setting  the table in VBA, this  is created in StarOffice Basic  in
accordance with  the previous  example using  createInstance, initialized  and

inserted in the document  through  insertTextContent.

126   OpenOffice.org  Basic  Programmer's  Guide



The tables inserted in a text document can be determined using a simple loop. The
method of the getTextTables() of the text document object is used for this
purpose:

Dim Doc As Object

Dim TextTables As Object

Dim Table As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

TextTables = Doc.getTextTables()

For I = 0 to TextTables.count - 1

Table = TextTables(I)

' Editing table

Next I

Text tables are available in StarOffice 7 through  the TextTables list  of the

document  object.  This  takes the place of the former  tables list  provided  in the
Selection object.  The previous  example shows  how a text  table can be created.

The options  for  accessing  text  tables are described  in the following  section.

Editing Tables

A table consists of individual rows. These in turn contain the various cells. Strictly
speaking, there are no table columns in StarOffice. These are produced implicitly
by arranging the rows (one under another) next to one another. To simplify access
to the tables, StarOffice, however, provides some methods which operate using
columns. These are useful if no cells have been merged in the table.

Let us first take the properties of the table itself. These are defined in the
com.sun.star.text.TextTable service. Here is an list of the most important
properties of the table object:

 BackColor (Long) – background color of table.

 BottomMargin (Long) – bottom margin in 100ths of a millimeter.

 LeftMargin (Long) – left margin in 100ths of a millimeter.

 RightMargin (Long) – right margin in 100ths of a millimeter.

Chapter 6   Text Documents   127



 TopMargin (Long) – top margin in 100ths of a millimeter.

 RepeatHeadline (Boolean) – table header is repeated on every page. 

 Width (Long) – absolute width of the table in 100ths of a millimeter.

Rows

A table consists of a list containing rows. The following example shows how the
rows of a table can be retrieved and formatted.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Dim Rows As Object

Dim Row As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Rows = Table.getRows

For I = 0 To Rows.getCount() - 1

Row = Rows.getByIndex(I)

Row.BackColor = &HFF00FF

Next

The example first creates a list containing all rows using a Table.getRows call.
The getCount and getByIndex methods allow the list to be further processed
and belongs to the com.sun.star.table.XtableRows interface. The
getByIndex method returns a row object, which supports the
com.sun.star.text.TextTableRow service.

Here are the central methods of the com.sun.star.table.XtableRows
interface:

 getByIndex(Integer) – returns a row object for the specified index.

 getCount() – returns the number of row objects.

128   OpenOffice.org  Basic  Programmer's  Guide



 insertByIndex(Index, Count) – inserts Count rows in the table as of the
Index position.

 removeByIndex(Index, Count) – deletes Count rows from the table as of
the Index position.

Whereas the getByIndex and getCount methods are available in all tables, the
insertByIndex and removeByIndex methods can only be used in tables that do
not contain merged cells. 

The com.sun.star.text.TextTableRow service provides the following
properties:

 BackColor (Long) – background color of row.

 Height (Long) – height of line in 100ths of a millimeter.

 IsAutoHeight (Boolean) – table height is dynamically adapted to the
content.

 VertOrient (const) – vertical orientation of the text frame – details on
vertical orientation of the text within the table (values in accordance with
com.sun.star.text.VertOrientation)

Columns

Columns are accessed in the same way as rows, using the getByIndex,
getCount, insertByIndex and removeByIndex methods on the Column
object, which is reached through getColumns. They can, however, only be used
in tables that do not contain merged table cells. Cells cannot be formatted by
column in StarOffice Basic. To do so, the method of formatting individual table
cells must be used.

Cells

Each cell of a StarOffice-document has a unique name. If the cursor of StarOffice is
in a cell, then the name of that cell can be seen in the status bar. The top left cell is
usually called A1 and the bottom right row is usually called Xn, where X stands for
the letters of the top column and n for the numbers of the last row. The cell objects
are available through the getCellByName() method of the table object. The

Chapter 6   Text Documents   129



following example shows a loop that passes through all the cells of a table and
enters the corresponding row and column numbers into the cells.

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

Dim Rows As Object

Dim RowIndex As Integer

Dim Cols As Object

Dim ColIndex As Integer

Dim CellName As String

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")

Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Rows = Table.getRows

Cols = Table.getColumns

For RowIndex = 1 To Rows.getCount()

For ColIndex = 1 To Cols.getCount()

CellName = Chr(64 + ColIndex) & RowIndex

Cell = Table.getCellByName(CellName)

Cell.String = "row: " & CStr(RowIndex) + ", column: " & CStr

(ColIndex)

Next

Next

A table cell is comparable with a standard text. It supports the
createTextCursor interface for creating an associated TextCursor object.

CellCursor = Cell.createTextCursor()

All formatting options for individual characters and paragraphs are therefore
automatically available.

130   OpenOffice.org  Basic  Programmer's  Guide



The following example searches through all tables of a text document and applies
the right-align format to all cells with numerical values by means of the
corresponding paragraph property.

Dim Doc As Object

Dim TextTables As Object

Dim Table As Object

Dim CellNames

Dim Cell As Object

Dim CellCursor As Object

Dim I As Integer

Dim J As Integer

Doc = StarDesktop.CurrentComponent

TextTables = Doc.getTextTables()

For I = 0 to TextTables.count - 1

Table = TextTables(I)

CellNames = Table.getCellNames()

For J = 0 to UBound(CellNames)

Cell = Table.getCellByName(CellNames(J))

If IsNumeric(Cell.String) Then

CellCursor = Cell.createTextCursor()

CellCursor.paraAdjust =

com.sun.star.style.ParagraphAdjust.RIGHT

End If

Next

Next

The example creates a TextTables list containing all tables of a text that are
traversed in a loop. StarOffice then creates a list of the associated cell names for each
of these tables. There are passed through in turn in a loop. If a cell contains a
numerical value, then the example changes the formatting correspondingly. To do
this, it first creates a TextCursor object which makes reference to the content of the
table cell and then adapts the paragraph properties of the table cell.

Chapter 6   Text Documents   131



Text Frames
Text frames are considered to be TextContent objects, just like tables and
graphs. They may essentially consist of standard text, but can be placed at any
position on a page and are not included in the text flow.

As with all TextContent objects, a distinction is also made with text frames
between the actual creation and insertion in the document.

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Doc.Text.insertTextContent(Cursor, Frame, False)

The text frame is created using the createInstance method of the document
object. The text frame created in this way can then be inserted in the document
using the insertTextContent method of the Text object. In so doing, the name
of the proper com.sun.star.text.TextFrame service should be specified. 

The text frame’s insert position is determined by a Cursor object, which is also
executed when inserted.

Text frames are StarOffice’s  counterpart  to the position  frame used in Word.
Whereas VBA uses the Document.Frames.Add method  for  this  purpose,

creation  in VBA is performed  using  the previous  procedure  with  the aid of a
TextCursor  as well  as the createInstance method  of the document  object.  

Text frame objects provide a range of properties with which the position and
behavior of the frame can be influenced. The majority of these properties are
defined in the com.sun.star.text.BaseFrameProperties service, which is
also supported by each TextFrame service. The central properties are: 

 BackColor (Long) – background color of the text frame.

 BottomMargin (Long) – bottom margin in 100ths of a millimeter.

132   OpenOffice.org  Basic  Programmer's  Guide



 LeftMargin (Long) – left margin in 100ths of a millimeter.

 RightMargin (Long) – right margin in 100ths of a millimeter.

 TopMargin (Long) – top margin in 100ths of a millimeter.

 Height (Long) – height of text frame in 100ths of a millimeter.

 Width (Long) – width of text frame in 100ths of a millimeter.

 HoriOrient (const) – horizontal orientation of text frame (in accordance
with com.sun.star.text.HoriOrientation).

 VertOrient (const) – vertical orientation of text frame (in accordance with
com.sun.star.text.VertOrientation).

The following example creates a text frame using the properties described
previously:

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Cursor.gotoNextWord(False)

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000

Frame.Height = 1000

Frame.AnchorType = com.sun.star.text.TextContentAnchorType.AS_CHARACTER

Frame.TopMargin = 0

Frame.BottomMargin = 0

Frame.LeftMargin = 0

Frame.RightMargin = 0

Frame.BorderDistance = 0

Frame.HoriOrient = com.sun.star.text.HoriOrientation.NONE

Frame.VertOrient = com.sun.star.text.VertOrientation.LINE_TOP

Doc.Text.insertTextContent(Cursor, Frame, False)

The example creates a TextCursor as the insertion mark for the text frame. This
is positioned between the first and second word of the text. The text frame is

Chapter 6   Text Documents   133



created using Doc.createInstance. The properties of the text frame objects are
set to the starting values required.

The interaction between the AnchorType (from the TextContent Service) and
VertOrient (from the BaseFrameProperties Service) properties should be
noted here. AnchorType receives the AS_CHARACTER value. The text frame is
therefore inserted directly in the text flow and behaves like a character. It can, for
example, be moved into the next line if a line break occurs. The LINE_TOP value
of the VertOrient property ensures that the upper edge of the text frame is at
the same height as the upper edge of the character.

Once initialization is complete, the text frame is finally inserted in the text
document using a call from insertTextContent.

To edit the content of a text frame, the user uses the TextCursor, which has
already been mentioned numerous times and is also available for text frames.

Dim Doc As Object

Dim TextTables As Object

Dim Cursor As Object

Dim Frame As Object

Dim FrameCursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000

Frame.Height = 1000

Doc.Text.insertTextContent(Cursor, Frame, False)

FrameCursor = Frame.createTextCursor()

FrameCursor.charWeight = com.sun.star.awt.FontWeight.BOLD

FrameCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER

FrameCursor.String = "This is a small Test!"

The example creates a text frame, inserts this in the current document and opens a
TextCursor for the text frame. This cursor is used to set the frame font to bold
type and to set the paragraph orientation to centered. The text frame is finally
assigned the “This is a small test!” string.

134   OpenOffice.org  Basic  Programmer's  Guide



Text Fields
Text fields are TextContent objects because they provide additional logic
extending beyond pure text. Text fields can be inserted in a text document using
the same methods as those used for other TextContent objects:

Dim Doc As Object

Dim DateTimeField As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

DateTimeField = Doc.createInstance("com.sun.star.text.TextField.DateTime")

DateTimeField.IsFixed = False

DateTimeField.IsDate = True

Doc.Text.insertTextContent(Cursor, DateTimeField, False)

The example inserts a text field with the current date at the start of the current text
document. The True value of the IsDate property results in only the date and
not time being displayed. The False value for IsFixed ensures that the date is
automatically updated when the document is opened.

While the type of a field  in VBA is specified  by a parameter of the 
Document.Fields.Add method,  the name of the service that is responsible  for

the field  type in question  defines  it in StarOffice Basic.

In the past, text  fields  were accessed using  a whole range of methods  that
StarOffice made available in the old  Selection object  (for  example InsertField,

DeleteUserField, SetCurField).  In StarOffice 7, the fields  are administered

using  an object-oriented concept.  To create a text  field,  a text  field  of the type
required  should  first  be created and initialized using  the properties  required. The
text  field  is then inserted  in the document  using  the insertTextContent method.

A corresponding  source text  can be seen in the previous  example. The most
important  field  types  and their  properties  are described  in the following  sections.

In addition to inserting text fields, searching a document for the fields can also be
an important task. The following example shows how all text fields of a text
document can be traversed in a loop and checked for their relevant type.

Chapter 6   Text Documents   135



Dim Doc As Object

Dim TextFieldEnum As Object

Dim TextField As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

TextFieldEnum = Doc.getTextFields.createEnumeration

While TextFieldEnum.hasMoreElements()

TextField = TextFieldEnum.nextElement()

If TextField.supportsService("com.sun.star.text.TextField.DateTime")

Then

MsgBox "Date/time"

ElseIf TextField.supportsService

("com.sun.star.text.TextField.Annotation") Then

MsgBox "Annotation"

Else

MsgBox "unknown"

End If

Wend

The starting point for establishing the text fields present is the TextFields list of
the document object. The example creates an Enumeration object on the basis of
this list, with which all text fields can be queried in turn in a loop. The text fields
found are checked for the service supported using the supportsService
method. If the field proves to be a date/time field or an annotation, then the
corresponding field type is displayed in an information box. If on the other hand,
the example encounters another field, then it displays the information
“unknown”.

Below, you will find a list of the most important text fields and their associated
properties. A complete list of all text fields is provided in the API reference in the
com.sun.star.text.TextField module. (When listing the service name of a
text field, uppercase and lowercase characters should be used in StarOffice Basic,
as in the previous example.)

136   OpenOffice.org  Basic  Programmer's  Guide



Number of Pages, Words and Characters

The text fields

 com.sun.star.text.TextField.PageCount

 com.sun.star.text.TextField.WordCount

 com.sun.star.text.TextField.CharacterCount

return the number of pages, words or characters of a text. They support the
following property: 

 NumberingType (const) - numbering format (guidelines in accordance
with constants from com.sun.star.style.NumberingType).

Current Page

The number of the current page can be inserted in a document using the
com.sun.star.text.TextField.PageNumber text field. The following
properties can be specified: 

 NumberingType (const) -  number format (guidelines in accordance with
constants from com.sun.star.style.NumberingType).

 Offset (short) – offset added to the number of pages (negative
specification also possible).

The following example shows how the number of pages can be inserted into the
footer of a document.

Dim Doc As Object

Dim DateTimeField As Object

Dim PageStyles As Object

Dim StdPage As Object

Dim FooterCursor As Object

Dim PageNumber As Object

Doc = StarDesktop.CurrentComponent

PageNumber = Doc.createInstance("com.sun.star.text.TextField.PageNumber")

PageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC

PageStyles = Doc.StyleFamilies.getByName("PageStyles")

Chapter 6   Text Documents   137



StdPage = PageStyles("Default")

StdPage.FooterIsOn = True

FooterCursor = StdPage.FooterTextLeft.Text.createTextCursor()

StdPage.FooterTextLeft.Text.insertTextContent(FooterCursor, PageNumber,

False)

The example first creates a text field which supports the
com.sun.star.text.TextField.PageNumber service. Since the header and
footer lines are defined as part of the page templates of StarOffice, this is initially
established using the list of all PageStyles.

To ensure that the footer line is visible, the FooterIsOn property is set to True. The
text field is then inserted in the document using the associated text object of the left-
hand footer line.

Annotations

Annotation fields (com.sun.star.text.TextField.Annotation) can be
seen by means of a small yellow symbol in the text. Clicking on this symbol opens
a text field, in which a comment on the current point in the text can be recorded.
An annotation field has the following properties.

 Author (String) - name of author.

 Content (String) - comment text.

 Date (Date) - date on which annotation is written.

Date / Time

A date /time field (com.sun.star.text.TextField.DateTime) represents
the current date or the current time. It supports the following properties:

 IsFixed (Boolean) – if True, the time details of the insertion remain
unchanged, if False, these are updated each time the document is opened.

 IsDate (Boolean) – if True, the field displays the current date, otherwise
the current time.

138   OpenOffice.org  Basic  Programmer's  Guide



 DateTimeValue (struct) – current content of field
(com.sun.star.util.DateTime structure)

 NumberFormat (const) – format in which the time or date is depicted.

Chapter Name / Number

The name of the current chapter is available through a text field of the
com.sun.star.text.TextField.Chapter type. The form can be defined
using two properties.

 ChapterFormat (const) – determines whether the chapter name or the
chapter number is depicted (in accordance with
com.sun.star.text.ChapterFormat)

 Level (Integer) – determines the chapter level whose name and/or
chapter number is to be displayed. The value 0 stands for highest level
available.

Bookmarks
Bookmarks (Service com.sun.star.text.Bookmark) are TextContent
objects. Bookmarks are created and inserted using the concept already described
previously:

Dim Doc As Object

Dim Bookmark As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Bookmark = Doc.createInstance("com.sun.star.text.Bookmark")

Bookmark.Name = "My bookmarks"

Doc.Text.insertTextContent(Cursor, Bookmark, True)

The example creates a Cursor, which marks the insert position of the bookmark
and then the actual bookmark object (Bookmark). The bookmark is then assigned
a name and is inserted in the document through insertTextContent at the
cursor position.

Chapter 6   Text Documents   139



The bookmarks of a text are accessed through a list called Bookmarks. The
bookmarks can either be accessed by their number or their name.

The following example shows how a bookmark can be found within a text, and a
text inserted at its position.

Dim Doc As Object

Dim Bookmark As Object

Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Bookmark = Doc.Bookmarks.getByName("My bookmarks")

Cursor = Doc.Text.createTextCursorByRange(Bookmark.Anchor)

Cursor.String = "Here is the bookmark"

In this example, the getByName method is used to find the bookmark required by
means of its name. The createTextCursorByRange call then creates a
Cursor, which is positioned at the anchor position of the bookmark. The cursor
then inserts the text required at this point.

140   OpenOffice.org  Basic  Programmer's  Guide



7 Spreadsheet Documents
StarOffice Basic provides an extensive interface for program-controlled creation
and editing of spreadsheets. This chapter describes how to control the relevant
services, methods and properties of spreadsheet documents.

The first section addresses the basic structure of spreadsheet documents and
shows you how to access and to edit the contents of individual cells.

The second section concentrates on how to edit spreadsheets efficiently by
focusing on cell areas and the options for searching and replacing cell contents.

The Range object  allows  you to address  any table area and has been extended in
the new API.

The Structure of Table-Based Documents
(Spreadsheets)
The document object of a spreadsheet is based on the
com.sun.star.sheet.SpreadsheetDocument service. Each of these
documents may contain several spreadsheets. In this guide, a table-based document
or spreadsheet document is the entire document, whereas a spreadsheet (or sheet for
short) is a sheet (table) in the document.

Different  terminology  for  spreadsheets  and their  content  is used in VBA and
StarOffice Basic.  Whereas the document  object  in VBA is called a Workbook  and
its  individual  pages Worksheets , they are called SpreadsheetDocument  and Sheet
in StarOffice Basic.

141

CHAPTER  7



Spreadsheets
You can access the individual sheets of a spreadsheet document through the
Sheets list.

The following examples show you how to access a sheet either through its number
or its name.

Example 1: access by means of the number (numbering begins with 0)

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet  = Doc. Sheets (0)

Example 2: access by means of the name

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

In the first example, the sheet is accessed by its number (counting begins at 0). In
the second example, the sheet is accessed by its name and the getByName
method. 

The Sheet object that is obtained by the getByName method supports the
com.sun.star.sheet.Spreadsheet service. In addition to providing several
interfaces for editing the content, this service provides the following properties: 

 IsVisible (Boolean) – the spreadsheet is visible.

 PageStyle (String) – name of the page template for the spreadsheet.

Creating, Deleting and Renaming Sheets

The Sheets list for a spreadsheet document is also used to create, delete, and
rename individual sheets. The following example uses the hasByName method to
check if a sheet called MySheet exists. If it does, the method determines a
corresponding object reference by using the getByName method and then saves

142   OpenOffice.org  Basic  Programmer's  Guide



the reference in a variable in Sheet. If the corresponding sheet does not exist, it is
created by the createInstance call and inserted in the spreadsheet document
by the insertByName method.

Dim Doc As Object

Dim Sheet As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

If Doc.Sheets.hasByName("MySheet") Then

Sheet = Doc.Sheets.getByName("MySheet")

Else

Sheet = Doc.createInstance("com.sun.star.sheet.Spreadsheet")

Doc.Sheets.insertByName("MySheet", Sheet)

End If

The getByName and insertByName methods are from the
com.sun.star.container.XnameContainer interface as described in
Chapter 4.

Rows and Columns
Each sheet contains a list of its rows and columns. These are available through the
Rows and Columns properties of the spreadsheet object and support the
com.sun.star.table.TableColumns and/or com.sun.star.table.
TableRows services.

The following example creates two objects that reference the first row and the first
column of a sheet and stores the references in the FirstCol and FirstRow object
variables.

Dim Doc As Object

Dim Sheet As Object

Dim FirstRow As Object

Dim FirstCol As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

FirstCol = Sheet.Columns(0)

FirstRow = Sheet.Rows(0)

Chapter 7   Spreadsheet Documents   143



The column objects support the com.sun.star.table.TableColumn service
that has the following properties:

 Width (long) – width of a column in hundredths of a millimeter.

 OptimalWidth (Boolean) – sets a column to its optimum width.

 IsVisible (Boolean) – displays a column.

 IsStartOfNewPage (Boolean) – when printing, creates a page break
before a column.

The width of a column is only optimized when the OptimalWidth property is set
to True. If the width of an individual cell is changed, the width of the column that
contains the cell is not changed. In terms of functionality, OptimalWidth is more
of a method than a property.

The row objects are based on the com.sun.star.table.RowColumn service
that has the following properties: 

 Height (long) – height of the row in 100ths of a millimeter.

 OptimalHeight (Boolean) – sets the row to its optimum height.

 IsVisible (Boolean) – displays the row.

 IsStartOfNewPage (Boolean) – when printing, creates a page break
before the row.

If the OptimalHeight property of a row is set to the True, the row height
changes automatically when the height of a cell in the row is changed. Automatic
optimization continues until the row is assigned an absolute height through the
Height property.

The following example activates the automatic height optimization for the first
five rows in the sheet and makes the second column invisible.

Dim Doc As Object

Dim Sheet As Object

Dim Row As Object

Dim Col As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

144   OpenOffice.org  Basic  Programmer's  Guide



Sheet = Doc.Sheets(0)

For I = 0 To 4

Row = Sheet.Rows(I)

Row.OptimalHeight = True

Next I

Col = Sheet.Columns(1)

Col.IsVisible = False

The Rows and Columns lists  can be accessed through  an index in StarOffice

Basic.  Unlike in VBA, the first  column  has the index  0 and not  the index 1.

Inserting and Deleting Rows and Columns

The Rows and Columns objects of a sheet can access existing rows and columns as
well as insert and delete them.

Dim Doc As Object

Dim Sheet As Object

Dim NewColumn As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Sheet.Columns.insertByIndex(3, 1)

Sheet.Columns.removeByIndex(5, 1)

This example uses the insertByIndex method to insert a new column into the
fourth column position in the sheet (index 3 - numbering starts at 0). The second
parameter specifies the number of columns to be inserted (in this example: one).

The removeByIndex method deletes the sixth column (index 5). Again, the
second parameter specifies the number of columns that you want to delete.

The methods for inserting and deleting rows use the Rows object function in the
same way as the methods shown for editing columns using the Columns object.

Chapter 7   Spreadsheet Documents   145



Cells
A spreadsheet consists of a two-dimensional list containing cells. Each cell is
defined by its X and Y-position with respect to the top left cell which has the
position (0,0).

The following example creates an object that references the top left cell and inserts
a text in the cell:

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.String = "Test"

In addition to numerical coordinates, each cell in a sheet has a name, for example,
the top left cell (0,0) of a spreadsheet is called A1. The letter A stands for the
column and the number 1 for the row. It is important that the name and position of
a cell are not confused because row counting for names begins with 1 but the
counting for position begins with 0.

In StarOffice, a table cell can be empty or contain text, numbers, or formulas. The
cell type is not determined by the content that is saved in the cell, but rather the
object property which was used for its entry. Numbers can be inserted and called
up with the Value property, text with the String property, and formulas with
the Formula property.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)

Cell.String = "Test"

Cell = Sheet.getCellByPosition(0, 2)

Cell.Formula = "=A1"

146   OpenOffice.org  Basic  Programmer's  Guide



The example inserts one number, one text, and one formula in the fields A1 to A3.

The Value, String, and Formula properties  supersede the PutCell method  for

setting  the values of a table cell.

StarOffice treats cell content that is entered using the String property as text,
even if the content is a number. Numbers are left-aligned in the cell instead of
right-aligned. You should also note the difference between text and numbers when
you use formulas:

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)

Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)

Cell.String = 1000

Cell = Sheet.getCellByPosition(0, 2)

Cell.Formula = "=A1+A2"

MsgBox Cell.Value 

Although cell A1 contains the value 100 and cell A2 contains the value 1000, the
A1+A2 formula returns the value 100. This is because the contents of cell A2 were
entered as a string and not as a number.

To check if the contents of a cell contains a number or a string, use the Type
property:

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Chapter 7   Spreadsheet Documents   147



Cell.Value = 1000

Select Case Cell.Type 

Case com.sun.star.table.CellContentType.EMPTY 

MsgBox "Content: Empty"

Case com.sun.star.table.CellContentType.VALUE

MsgBox "Content: Value"

Case com.sun.star.table.CellContentType.TEXT

MsgBox "Content: Text"

Case com.sun.star.table.CellContentType.FORMULA

MsgBox "Content: Formula"

End Select

The Cell.Type property returns a value for the com.sun.star.table.
CellContentType enumeration which identifies the contents type of a cell. The
possible values are:

 EMPTY – no value

 VALUE – number

 TEXT – strings

 FORMULA – formula

Inserting, Deleting, Copying and Moving Cells

In addition to directly modifying cell content, StarOffice Calc also provides an
interface that allows you to insert, delete, copy, or merge cells. The interface
(com.sun.star.sheet.XRangeMovement) is available through the
spreadsheet object and provides four methods for modifying cell content.

The insertCell method is used to insert cells into a sheet.

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

148   OpenOffice.org  Basic  Programmer's  Guide



CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

Sheet.insertCells(CellRangeAddress,

com.sun.star.sheet.CellInsertMode.DOWN)

This example inserts a cells range that is two rows by two columns in size into the
second column and row (each bear the number 1) of the first sheet (number 0) in
the spreadsheet. Any existing values in the specified cell range are are moved
below the range.

To define the cell range that you want to insert, use the com.sun.star.table.
CellRangeAddress structure. The following values are included in this
structure:

 Sheet (short) – number of the sheet (numbering begins with 0).

 StartColumn (long) – first column in the cell range (numbering begins with
0).

 StartRow (long) – first row in the cell range (numbering begins with 0).

 EndColumn (long) – final column in the cell range (numbering begins with
0).

 EndRow (long) – final row in the cell range (numbering begins with 0).

The completed CellRangeAddress structure must be passed as the first
parameter to the insertCells method. The second parameter of insertCells
contains a value of the com.sun.
star.sheet.CellInsertMode enumeration and defines what is to be done with
the values that are located in front of the insert position. The CellInsertMode
enumeration recognizes the following values: 

 NONE – the current values remain in their present position.

 DOWN – the cells at and under the insert position are moved downwards.

 RIGHT – the cells at and to the right of the insert position are moved to the
right. 

 ROWS – the rows after the insert position are moved downwards.

 COLUMNS – the columns after the insert position are moved to the right.

Chapter 7   Spreadsheet Documents   149



The removeRange method is the counterpart to the insertCells method. This
method deletes the range that is defined in the CellRangeAddress structure
from the sheet.

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

Sheet.removeRange(CellRangeAddress, com.sun.star.sheet.CellDeleteMode.UP)

This example removes the B2:C3 cell range from the sheet and then shifts the
underlying cells up by two rows. The type of removal is defined by one of the
following values from the com.sun.star.sheet.CellDeleteMode
enumeration:

 NONE – the current values remain in their current position.

 UP – the cells at and below the insert position are moved upwards.

 LEFT – the cells at and to the right of the insert position are moved to the left.

 ROWS – the rows after the insert position are moved upwards.

 COLUMNS – the columns after the insert position are moved to the left.

The XRangeMovement interface provides two additional methods for moving
(moveRange) or copying (copyRange) cell ranges. The following example moves
the B2:C3 range so that the range starts at position A6:

Dim Doc As Object

Dim Sheet As Object

Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Dim CellAddress As New com.sun.star.table.CellAddress

Doc = StarDesktop.CurrentComponent

150   OpenOffice.org  Basic  Programmer's  Guide



Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0

CellRangeAddress.StartColumn = 1

CellRangeAddress.StartRow = 1

CellRangeAddress.EndColumn = 2

CellRangeAddress.EndRow = 2

CellAddress.Sheet = 0

CellAddress.Column = 0

CellAddress.Row = 5

Sheet.moveRange(CellAddress, CellRangeAddress)

In addition to the CellRangeAdress structure, the moveRange method expects
a com.sun.star.table.CellAddress structure to define the origin of the
move’s target region. The CellAddress method provides the following values:

 Sheet (short) – number of the spreadsheet (numbering begins with 0).

 Column (long) – number of the addressed column (numbering begins with
0).

 Row (long) – number of the addressed row (numbering begins with 0).

The cell contents in the target range are always overwritten by the moveRange
method. 
Unlike in the InsertCells method , a parameter for performing automatic
moves is not provided in the removeRange method.

The copyRange method functions in the same way as the moveRange method,
except that copyRange inserts a copy of the cell range instead of moving it.

In terms of their  function,  the StarOffice Basic  insertCell, removeRange, and

copyRange methods  are comparable with  the VBA Range.Insert, 

Range.Delete ,and Range.Copy methods.  Whereas in VBA, the methods  are

applied to the corresponding  Range object,  in StarOffice Basic  they are applied

to the associated  Sheet object.

Chapter 7   Spreadsheet Documents   151



Formatting
A spreadsheet document provides properties and methods for formatting cells
and pages.

Cell Properties

There are numerous options for formatting cells, such as specifying the font type
and size for text. Each cell supports the
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties services, the main properties
of which are described in Chapter 6 (Text Documents). Special cell formatting is
handled by the com.sun.star.table.CellProperties service. The main
properties of this service are described in the following sections.

You can apply all of the named properties to individual cells and to cell ranges.

The CellProperties object  in the StarOffice API is comparable with  the

Interior object  from VBA which  also defines cell-specific  properties.

Background Color and Shadows

The com.sun.star.table.CellProperties service provides the following
properties for defning background colors and shadows:

 CellBackColor (Long) - background color of the table cell.

 IsCellBackgroundTransparent (Boolean) - sets the background color
to transparent.

 ShadowFormat (struct) – specifies the shadow for cells (structure in
accordance with com.sun.star.table.ShadowFormat).

The com.sun.star.table.ShadowFormat structure and the detailed
specifications for cell shadows have the following structure:

 Location (enum) - position of shadow (value from the
com.sun.star.table.ShadowLocation structure).

 ShadowWidth (Short) - size of shadow in hundredths of a millimeter.

 IsTransparent (Boolean) - sets the shadow to transparent.

152   OpenOffice.org  Basic  Programmer's  Guide



 Color (Long) - color of shadow.

The following example writes the number 1000 to the B2 cell, changes the
background color to red using the CellBackColor property, and then creates a
light gray shadow for the cell that is moved 1 mm to the left and down.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Dim ShadowFormat As New com.sun.star.table.ShadowFormat

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.CellBackColor = RGB(255, 0, 0)

ShadowFormat.Location = com.sun.star.table.ShadowLocation.BOTTOM_RIGHT

ShadowFormat.ShadowWidth = 100

ShadowFormat.Color = RGB(160, 160, 160)

Cell.ShadowFormat = ShadowFormat

Justification

StarOffice provides various functions that allow you to change the justification of
a text in a table cell.

The following properties define the horizontal and vertical justification of a text: 

 HoriJustify (enum) - horizontal justification of the text (value from
com.sun.star.table.CellHoriJustify)

 VertJustify (enum) - vertical justification of the text (value from
com.sun.star.table.CellVertJustify)

 Orientation (enum) - orientation of text (value in accordance with
com.sun.star.table.CellOrientation)

 IsTextWrapped (Boolean) - permits automatic line breaks within the cell

 RotateAngle (Long) - angle of rotation of text in hundredths of a degree

Chapter 7   Spreadsheet Documents   153



The following example shows how you can "stack" the contents of a cell so that the
individual characters are printed one under another in the top left corner of the
cell. The characters are not rotated.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.HoriJustify = com.sun.star.table.CellHoriJustify.LEFT

Cell.VertJustify = com.sun.star.table.CellVertJustify.TOP

Cell.Orientation = com.sun.star.table.CellOrientation.STACKED

Number, Date and Text Format

StarOffice provides a whole range of predefined date and time formats. Each of
these formats has an internal number that is used to assign the format to cells
using the NumberFormat property. StarOffice provides the queryKey and
addNew methods so that you can access existing number formats as well as create
your own number formats. The methods are accessed through the following object
call:

NumberFormats = Doc.NumberFormats

A format is specified using a format string that is structured in a similar way to
the format function of StarOffice Basic. However there is one major difference:
whereas the command format expects English abbreviations and decimal points or
characters as thousands separators, the country-specified abbreviations must be
used for the structure of a command format for the NumberFormats object.

The following example formats the B2 cell so that numbers are displayed with
three decimal places and use commas as a thousands separator.

Dim Doc As Object

Dim Sheet As Object

Dim Cell As Object

154   OpenOffice.org  Basic  Programmer's  Guide



Dim NumberFormats As Object

Dim NumberFormatString As String

Dim NumberFormatId As Long

Dim LocalSettings As New com.sun.star.lang.Locale

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 23400.3523565

LocalSettings.Language = "en"

LocalSettings.Country = "us"

NumberFormats = Doc.NumberFormats

NumberFormatString = "#,##0.000"

NumberFormatId = NumberFormats.queryKey(NumberFormatString, LocalSettings,

True)

If NumberFormatId = -1 Then

NumberFormatId = NumberFormats.addNew(NumberFormatString,

LocalSettings)

End If

MsgBox NumberFormatId

Cell.NumberFormat = NumberFormatId

The Format Cells dialog in StarOffice Calc provides an overview of the different
formatting options for cells.

Page Properties

Page properties are the formatting options that position document content on a
page as well as visual elements that are repeated page after page. These include

 Paper formats

 Page margins

 Headers and footers.

Chapter 7   Spreadsheet Documents   155



The procedure for defining page formats differs from other forms of formatting.
Whereas cell, paragraph, and character element can be directly, page formats can
also be defined and indirectly applied using page styles. For example, headers or
footers are added to the page style.

The following sections describe the main formatting options for spreadsheet
pages. Many of the styles that are described are also available for text documents.
The page properties that are valid for both types of documents are defined in the
com.sun.star.style.PageProperties service. The page properties that
only apply to spreadsheet documents are defined in the
com.sun.star.sheet.TablePageStyle service.

The page properties  (page margins,  borders,  and so on) for  a Microsoft  Office
document  are defined by means of a PageSetup object  at the Worksheet object

(Excel) or Document object  (Word) level. 

In StarOffice, these properties  are defined using  a page style which  in turn  is
linked  to the associated  document.

Page Background

The com.sun.star.style.PageProperties service defines the following
properties of a pages background:

 BackColor (long) – color of background

 BackGraphicURL (String) – URL of the background graphics that you
want to use

 BackGraphicFilter (String) – name of the filter for interpreting the
background graphics

 BackGraphicLocation (Enum) – position of the background graphics
(value according to com.sun.star.style.GraphicLocation
enumeration)

 BackTransparent (Boolean) - makes the background transparent

Page Format

The page format is defined using the following properties of the
com.sun.star.style.PageProperties service:

156   OpenOffice.org  Basic  Programmer's  Guide



 IsLandscape (Boolean) – landscape format

 Width (long) – width of page in hundredths of a millimeter

 Height (long) – height of page in hundredths of a millimeter

 PrinterPaperTray (String) – name of the printer paper tray that you
want to use

The following example sets the page size of the "Default" page style to the DIN A5
landscape format (height 14.8 cm, width 21 cm):

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim PageStyles As Object

Dim DefPage As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.IsLandscape = True

DefPage.Width = 21000

DefPage.Height = 14800

Page Margin, Border and Shadow

The com.sun.star.style.PageProperties service provides the following
properties for adjusting page margins as well as borders and shadows:

 LeftMargin (long) – width of the left hand page margin in hundredths of a
millimeter

 RightMargin (long) – width of the right hand page margin in hundredths
of a millimeter.

 TopMargin (long) – width of the top page margin in hundredths of a
millimeter

 BottomMargin (long) – width of the bottom page margin in hundredths of
a millimeter

 LeftBorder (struct) – specifications for left-hand line of page border
(com.sun.star.table.BorderLine structure)

Chapter 7   Spreadsheet Documents   157



 RightBorder (struct) – specifications for right-hand line of page border
(com.sun.star.table.BorderLine structure)

 TopBorder (struct) – specifications for top line of page border
(com.sun.star.table.BorderLine structure)

 BottomBorder (struct) – specifications for bottom line of page border
(com.sun.star.table.BorderLine structure)

 LeftBorderDistance (long) – distance between left-hand page border
and page content in hundredths of a millimeter

 RightBorderDistance (long) – distance between right-hand page border
and page content in hundredths of a millimeter

 TopBorderDistance (long) – distance between top page border and page
content in hundredths of a millimeter

 BottomBorderDistance (long) – distance between bottom page border
and page content in hundredths of a millimeter

 ShadowFormat (struct) – specifications for shadow of content area of
page (com.sun.star.table.ShadowFormat structure)

The following example sets the left and right-hand borders of the "Default" page
style to 1 centimeter.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim PageStyles As Object

Dim DefPage As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.LeftMargin = 1000

DefPage.RightMargin = 1000

158   OpenOffice.org  Basic  Programmer's  Guide



Headers and Footers

The headers and footers of a document form part of the page properties and are
defined using the com.sun.star.style.PageProperties service. The
properties for formatting headers are:

 HeaderIsOn (Boolean) – header is activated

 HeaderLeftMargin (long) – distance between header and left-hand page
margin in hundredths of a millimeter.

 HeaderRightMargin (long) – distance between header and right-hand
page margin in hundredths of a millimeter

 HeaderBodyDistance (long) – distance between header and main body of
document in hundredths of a millimeter

 HeaderHeight (long) – height of header in hundredths of a millimeter

 HeaderIsDynamicHeight (Boolean) – height of header is automatically
adapted to content

 HeaderLeftBorder (struct) - details of the left-hand border of frame
around header (com.sun.star.table.BorderLine structure)

 HeaderRightBorder (struct) - details of the right-hand border of frame
around header (com.sun.star.table.BorderLine structure)

 HeaderTopBorder (struct) - details of the top line of the border around
header (com.sun.star.table.BorderLine structure)

 HeaderBottomBorder (struct) - details of the bottom line of the border
around header (com.sun.star.table.BorderLine structure)

 HeaderLeftBorderDistance (long) – distance between left-hand border
and content of header in hundredths of a millimeter

 HeaderRightBorderDistance (long) – distance between right-hand
border and content of header in hundredths of a millimeter

 HeaderTopBorderDistance (long) – distance between top border and
content of header in hundredths of a millimeter

 HeaderBottomBorderDistance (long) – distance between bottom border
and content of header in hundredths of a millimeter

Chapter 7   Spreadsheet Documents   159



 HeaderIsShared (Boolean) – headers on even and odd pages have the
same content (refer to HeaderText, HeaderTextLeft and
HeaderTextRight)

 HeaderBackColor (long) – background color of header

 HeaderBackGraphicURL (String) – URL of the background graphics that
you want to use

 HeaderBackGraphicFilter (String) – name of the filter for interpreting
the background graphics for the header

 HeaderBackGraphicLocation (Enum) – position of the background
graphics for the header (value according to
com.sun.star.style.GraphicLocation enumeration)

 HeaderBackTransparent (Boolean) – shows the background of the header
as transparent

 HeaderShadowFormat (struct) – details of shadow of header
(com.sun.star.table.ShadowFormat structure)

The properties for formatting footers are:

 FooterIsOn (Boolean) – footer is activated

 FooterLeftMargin (long) – distance between footer and left-hand page
margin in hundredths of a millimeter

 FooterRightMargin (long) – distance between footer and right-hand
page margin in hundredths of a millimeter

 FooterBodyDistance (long) – distance between footer and main body of
document in hundredths of a millimeter

 FooterHeight (long) – height of footer in hundredths of a millimeter

 FooterIsDynamicHeight (Boolean) – height of footer is adapted
automatically to the content

 FooterLeftBorder (struct) - details of left-hand line of border around
footer (com.sun.star.table.BorderLine structure)

 FooterRightBorder (struct) - details of right-hand line of border
around footer (com.sun.star.table.BorderLine structure)

 FooterTopBorder (struct) - details of top line of border around footer
(com.sun.star.table.BorderLine structure)

160   OpenOffice.org  Basic  Programmer's  Guide



 FooterBottomBorder (struct) - details of bottom line of border around
footer (com.sun.star.table.BorderLine structure)

 FooterLeftBorderDistance (long) – distance between left-hand border
and content of footer in hundredths of a millimeter

 FooterRightBorderDistance (long) – distance between right-hand
border and content of footer in hundredths of a millimeter

 FooterTopBorderDistance (long) – distance between top border and
content of footer in hundredths of a millimeter

 FooterBottomBorderDistance (long) – distance between bottom border
and content of footer in hundredths of a millimeter

 FooterIsShared (Boolean) – the footers on the even and odd pages have
the same content (refer to FooterText, FooterTextLeft und
FooterTextRight).

 FooterBackColor (long) – background color of footer

 FooterBackGraphicURL (String) – URL of the background graphics that
you want to use

 FooterBackGraphicFilter (String) – name of the filter for interpreting
the background graphics for the footer

 FooterBackGraphicLocation (Enum) – position of background graphics
for the footer (value according to
com.sun.star.style.GraphicLocation enumeration)

 FooterBackTransparent (Boolean) – shows the background of the
footer as transparent

 FooterShadowFormat (struct) – details of shadow of footer
(com.sun.star.table.ShadowFormat structure)

Changing the Text of Headers and Footers

The content of headers and footers in a spreadsheet is accessed through the
following properties:

 LeftPageHeaderContent (Object) – content of headers for even pages
(com.sun.star.sheet.HeaderFooterContent service)

 RightPageHeaderContent (Object) – content of headers for odd pages
(com.sun.star.sheet.HeaderFooterContent service)

Chapter 7   Spreadsheet Documents   161



 LeftPageFooterContent (Object) – content of footers for even pages
(com.sun.star.sheet.HeaderFooterContent service)

 RightPageFooterContent (Object) – content of footers for odd pages
(com.sun.star.sheet.HeaderFooterContent service)

If you do not need to distinguish between headers or footers for odd and even
pages (the FooterIsShared property is False), then set the properties for
headers and footers on odd pages.

All the named objects return an object that supports the com.sun.star.sheet.
HeaderFooterContent service. By means of the (non-genuine) properties
LeftText, CenterText, and RightText, this service provides three text
elements for the headers and footers of StarOffice Calc.

The following example writes the "Just a Test." value in the left-hand text field of
the header from the "Default" template.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim PageStyles As Object

Dim DefPage As Object

Dim HText As Object

Dim HContent As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True

HContent = DefPage.RightPageHeaderContent

HText = HContent.LeftText

HText.String = "Just a Test."

DefPage.RightPageHeaderContent = HContent

Note the last line in the example:  Once the text is changed, the TextContent
object must be assigned to the header again so that the change is effective.

162   OpenOffice.org  Basic  Programmer's  Guide



Another mechanism for changing the text of headers and footers is available for
text documents (StarOffice Writer) because these consist of a single block of text.
The following properties are defined in the
com.sun.star.style.PageProperties service:

 HeaderText (Object) – text object with content of the header
(com.sun.star.text.XText service)

 HeaderTextLeft (Object) – text object with content of headers on left-
hand pages (com.sun.star.text.XText service)

 HeaderTextRight (Object) – text object with content of headers on right-
hand pages (com.sun.star.text.XText service)

 FooterText (Object) – text object with content of the footer
(com.sun.star.text.XText service)

 FooterTextLeft (Object) – text object with content of footers on left-
hand pages (com.sun.star.text.XText service)

 FooterTextRight (Object) – text object with content of footers on right-
hand pages (com.sun.star.text.XText service)

The following example creates a header in the "Default" page style for text
documents and adds the text "Just a Test" to the header.

Dim Doc As Object

Dim Sheet As Object

Dim StyleFamilies As Object 

Dim PageStyles As Object

Dim DefPage As Object

Dim HText As Object

Doc = StarDesktop.CurrentComponent

StyleFamilies = Doc.StyleFamilies

PageStyles = StyleFamilies.getByName("PageStyles")

DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True

HText = DefPage.HeaderText 

HText.String = "Just a Test."

In this instance, access is provided directly through the HeaderText property of
the page style rather than the HeaderFooterContent object.

Chapter 7   Spreadsheet Documents   163



Centering (Spreadsheets Only)

The com.sun.star.sheet.TablePageStyle service is only used in StarOffice
Calc page styles and allows cell ranges that you want to printed to be centered on
the page. This service provides the following properties:

 CenterHorizontally (Boolean) – table content is centered horizontally

 CenterVertically (Boolean) – table content is centered vertically

Definition of Elements to be Printed (Spreadsheets Only)

When you format sheets, you can define whether page elements are visible. For
this purpose, the com.sun.star.sheet.TablePageStyle service provides the
following properties: 

 PrintAnnotations (Boolean) – prints cell comments

 PrintGrid (Boolean) – prints the cell gridlines

 PrintHeaders (Boolean) – prints the row and column headings

 PrintCharts (Boolean) – prints charts contained in a sheet

 PrintObjects (Boolean) – prints embedded objects

 PrintDrawing (Boolean) – prints draw objects

 PrintDownFirst (Boolean) – if the contents of a sheet extend across
several pages, they are first printed in vertically descending order, and then
down the right-hand side.

 PrintFormulas (Boolean) – prints the formulas instead of the calculated
values

 PrintZeroValues (Boolean) – prints the zero values

164   OpenOffice.org  Basic  Programmer's  Guide



Editing Spreadsheet Documents
Efficiently
Whereas the previous section described the main structure of spreadsheet
documents, this section describes the services that allow you to easily access
individual cells or cell ranges.

Cell Ranges
In addition to an object for individual cells (com.sun.star.table.Cell
service), StarOffice also provides objects that represent cell ranges. Such
CellRange objects are created using the getCellRangeByName call of the
spreadsheet object:

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("A1:C15")

A colon (:) is used to specify a cell range in a spreadsheet document. For example,
A1:C15 represents all the cells in rows 1 to 15 in columns A, B, and C.

The location of individual cells in a cell range can be determined using the
getCellByPosition method, where the coordinates of the top left cell in the cell
range is (0, 0). The following example uses this method to create an object of cell
C3.

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Dim Cell As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("B2:D4")

Cell = CellRange.GetCellByPosition(1, 1)

Chapter 7   Spreadsheet Documents   165



Formatting Cell Ranges

Just like individual cells, you can apply formatting to cell ranges using the
com.sun.star.table.CellProperties service. For more information and
examples of this service, see the Formatting section.

Computing With Cell Ranges

You can use the computeFunction method to perform mathematical operations
on cell ranges. The computeFunction expects a constant as the parameter that
describes the mathematical function that you want to use. The associated
constants are defined in the com.sun.star.sheet.GeneralFunction
enumeration. The following values are available:

 SUM - sum of all numerical values

 COUNT - total number of all values (including non-numerical values)

 COUNTNUMS - total number of all numerical values

 AVERAGE - average of all numerical values

 MAX - largest numerical value

 MIN - smallest numerical value

 PRODUCT - product of all numerical values

 STDEV - standard deviation

 VAR - variance

 STDEVP - standard deviation based on the total population

 VARP - variance based on the total population

The following example computes the average value of the A1:C3 range and prints
the result in a message box:

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.getByName("Sheet 1")

CellRange = Sheet.getCellRangeByName("A1:C3")

MsgBox CellRange.computeFunction

(com.sun.star.sheet.GeneralFunction.AVERAGE)

166   OpenOffice.org  Basic  Programmer's  Guide



Deleting Cell Contents

The clearContents method simplifies the process of deleting cell contents and
cell ranges in that it deletes one specific type of content from a cell range.

The following example removes all the strings and the direct formatting information
from the B2:C3 range.

Dim Doc As Object

Dim Sheet As Object

Dim CellRange As Object

Dim Flags As Long

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

CellRange = Sheet.getCellRangeByName("B2:C3")

Flags = com.sun.star.sheet.CellFlags.STRING + _

com.sun.star.sheet.CellFlags.HARDATTR

CellRange.clearContents(Flags)

The flags specified in clearContents come from the com.sun.star.sheet.
CellFlags constants list. This list provides the following elements:

 VALUE – numerical values that are not formatted as date or time

 DATETIME – numerical values that are formatted as date or time

 STRING - strings

 ANNOTATION – comments that are linked to cells

 FORMULA – formulas

 HARDATTR – direct formatting of cells

 STYLES – indirect formatting

 OBJECTS – drawing objects that are connected to cells

 EDITATTR – character formatting that only applies to parts of the cells

You can also add the constants together to delete different information using a call
from clearContents.

Chapter 7   Spreadsheet Documents   167



Searching and Replacing Cell Contents
Spreadsheet documents, like text documents, provide a function for searching and
replacing.

The descriptor objects for searching and replacing in spreadsheet documents are
not created directly through the document object, but rather through the Sheets
list. The following is an example of a search and replace process:

Dim Doc As Object

Dim Sheet As Object

Dim ReplaceDescriptor As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets(0)

ReplaceDescriptor = Sheet.createReplaceDescriptor()

ReplaceDescriptor.SearchString = "is"

ReplaceDescriptor.ReplaceString = "was"

For I = 0 to Doc.Sheets.Count - 1

Sheet = Doc.Sheets(I)

Sheet.ReplaceAll(ReplaceDescriptor) 

Next I

This example uses the first page of the document to create a
ReplaceDescriptor and then  applies this to all pages in a loop.

168   OpenOffice.org  Basic  Programmer's  Guide



8 Drawings and Presentations
This chapter provides an introduction to the macro-controlled creation and editing
of drawings. The first section describes the structure of drawings, including the
basic elements that contain drawings. The second section addresses more complex
editing functions, such as grouping, rotating, and scaling objects.

Information about creating, opening, and saving drawings can be found in
Chapter 5, Working with StarOffice Documents.

The Structure of Drawings
StarOffice does not limit the number of pages in a drawing document. You can
design each page separately. There is also no limit to the number of drawing
elements that you can add to a page.

This picture is slightly complicated by the presence of layers. By default, each
drawing document contains the Layout, Controls, and Dimension Lines layers and all
drawing elements are added to the Layout layer. You also have the option to add
new layers. See the StarOffice Developer's Guide for more information about
drawing layers.

Pages
The pages of a drawing document are available through the DrawPages list. You
can access individual pages either through their number or their name. If a
document has one page and this is called Slide 1, then the following examples are
identical.

169

CHAPTER  8



Example 1:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Example 2:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages.getByName("Slide 1")

In example 1, the page is addressed by its number (counting begins at 0). In the
second example, the page is accessed by its name and the getByName method.

Dim sUrl As String, sFilter As String

Dim sOptions As String

Dim oSheets As Object, oSheet As Object

oSheets = oDocument.Sheets

If oSheets.hasByName("Link") Then

oSheet = oSheets.getByName("Link")

Else

oSheet = oDocument.createInstance

("com.sun.star.sheet.Spreadsheet")

oSheets.insertByName("Link", oSheet)

oSheet.IsVisible = False

End If

The preceding call returns a page object that supports the
com.sun.star.drawing.DrawPage service. The service recognizes the
following properties:

 BorderLeft (Long) – left-hand border in hundredths of a millimeter

 BorderRight (Long) – right-hand border in hundredths of a millimeter

 BorderTop (Long) – top border in hundredths of a millimeter

 BorderBottom (Long) – bottom border in hundredths of a millimeter

170   OpenOffice.org  Basic  Programmer's  Guide



 Width (Long) – page width in hundredths of a millimeter

 Height (Long) – page height in hundredths of a millimeter

 Number (Short) – number of pages (numbering begins at 1), read-only

 Orientation (Enum) – page orientation (in accordance with
com.sun.star.view.PaperOrientation enumeration)

If these settings are changed, then all of the pages in the document are affected.

The following example sets the page size of a drawing document which has just
been opened to 20 × 20 centimeters with a page margin of 0.5 centimeters:

Dim Doc As Object

Dim Page As Object

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Page.BorderLeft = 500

Page.BorderRight = 500

Page.BorderTop = 500

Page.BorderBottom = 500

Page.Width = 20000

Page.Height = 20000

Elementary Properties of Drawing Objects
Drawing objects include shapes (rectangles, circles, and so on), lines, and text
objects. All of these share a number of common features and support the
com.sun.star.drawing.Shape service. This service defines the Size and
Position properties of a drawing object.

StarOffice Basic also offers several other services through which you can modify
such properties, as formatting or apply fills. The formatting options that are
available depend on the type of drawing object.

Chapter 8   Drawings  and Presentations   171



The following example creates and inserts a rectangle in a drawing document:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

This example uses the StarDesktop.CurrentComponent call to determine
which document is open. The document object determined this way returns the
first page of the drawing through the drawPages(0) call.

The Point and Size structures with the point of origin (left hand corner) and the
size of the drawing object are then initialized. The lengths are specified in
hundredths of a millimeter.

The program code then uses the Doc.createInstance call to create the
rectangle drawing object as specified by the
com.sun.star.drawing.RectangleShape service. At the end, the drawing
object is assigned to a page using a Page.add call.

Fill Properties

This section describes four services and in each instance the sample program code
uses a rectangle shape element that combines several types of formatting. Fill
properties are combined in the com.sun.star.drawing.FillProperties
service.

172   OpenOffice.org  Basic  Programmer's  Guide



StarOffice recognizes four main types of formatting for a fill area. The simplest
variant is a single-color fill. The options for defining color gradients and hatches
let you create other colors into play.  The fourth variant is the option of projecting
existing graphics into the fill area.

The fill mode of a drawing object is defined using the FillStyle property. The
permissible values are defined in com.sun.star.drawing.FillStyle.

Single Color Fills

The main property for single-color fills is

 FillColor (Long) – fill color of area.

To use the fill mode, you must the FillStyle property to the SOLID fill mode.

The following example creates a rectangle shape and fills it with red (RGB value
255, 0, 0):

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID

RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

Chapter 8   Drawings  and Presentations   173



Color Gradient

If you set the FillStyle property to GRADIENT, you can apply a color gradient
to any fill area of a StarOffice document.

If you want to apply a predefined color gradient, you can assign the associated
name of the FillTransparenceGradientName property. To define your own
color gradient, you need to complete a com.sun.star.awt.Gradient structure
to assign the FillGradient property. This property provides the following
options:

 Style (Enum) - type of gradient, for example, linear or radial (default values
in accordance with com.sun.star.awt.GradientStyle)

 StartColor (Long) - start color of color gradient

 EndColor (Long) - end color of color gradient

 Angle (Short) - angle of color gradient in tenths of a degree

 XOffset (Short) - X-coordinate at which the color gradient starts, specified in
hundredths of a millimeter

 YOffset (Short) - Y-coordinate at which the color gradient begins, specified in
hundredths of a millimeter

 StartIntensity (Short) - intensity of StartColor as a percentage (in
StarOffice Basic, you can also specify values higher than 100 percent)

 EndIntensity (Short) - intensity of EndColor as a percentage (in
StarOffice Basic, you can also specify values higher than 100 percent)

 StepCount (Short) - number of color graduations which StarOffice is to
calculate for the gradients

The following example demonstrates the use of color gradients with the aid of the
com.sun.star.awt.Gradient structure:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim Gradient As New com.sun.star.awt.Gradient 

Point.x = 1000

174   OpenOffice.org  Basic  Programmer's  Guide



Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Gradient.Style = com.sun.star.awt.GradientStyle.LINEAR

Gradient.StartColor = RGB(255,0,0)

Gradient.EndColor = RGB(0,255,0)

Gradient.StartIntensity = 150

Gradient.EndIntensity = 150

Gradient.Angle = 450

Gradient.StepCount = 100

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.GRADIENT

RectangleShape.FillGradient = Gradient

Page.add(RectangleShape)

This example creates a linear color gradient (Style = LINEAR). The gradient
starts with red (StartColor) in the top left corner, and extends at a 45 degree
angle (Angle) to green (EndColor) in the bottom right corner. The color intensity
of the start and end colors is 150 percent  (StartIntensity and
EndIntensity) which results in the colors seeming brighter than the  values
specified in the StartColor and EndColor properties. The color gradient is
depicted using a hundred graduated individual colors (StepCount).

Hatches

To create a hatch fill, the FillStyle property must be set to HATCH. The program
code for defining the hatch is very similar to the code for color gradients. Again an
auxiliary structure, in this case com.sun.star.drawing.Hatch, is used to
define the appearance of hatches. The structure for hatches has the following
properties:

 Style (Enum) - type of hatch: simple, squared, or squared with diagonals
(default values in accordance with com.sun.star.awt.HatchStyle)

 Color (Long) - color of lines

 Distance (Long) - distance between lines in hundredths of a millimeter

 Angle (Short) - angle of hatch in tenths of a degree

Chapter 8   Drawings  and Presentations   175



The following example demonstrates the use of a hatch structure:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim Hatch As New com.sun.star.drawing.Hatch

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.HATCH

Hatch.Style = com.sun.star.drawing.HatchStyle.SINGLE

Hatch.Color = RGB(64,64,64)

Hatch.Distance = 20

Hatch.Angle = 450

RectangleShape.FillHatch = Hatch

Page.add(RectangleShape)

This code creates a simple hatch structure (HatchStyle = SINGLE) whose lines
are rotated 45 degrees (Angle). The lines are dark gray (Color) and are spaced is
0.2 millimeters (Distance) apart.

Bitmaps

To use bitmap projection as a fill, you must set the FillStyle property to
BITMAP. If the bitmap  is already available in StarOffice, you just need to specify
its name in the FillBitMapName property and its display style (simple, tiled, or
elongated) in the FillBitmapMode property (default values in accordance with
com.sun.star.drawing.BitmapMode).

176   OpenOffice.org  Basic  Programmer's  Guide



If you want to use an external bitmap file, you can specify its URL in the
FillBitmapURL property.

The following example creates a rectangle and tiles the Sky bitmap that is
available in StarOffice to fill the area of the rectangle.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.BITMAP

RectangleShape.FillBitmapName = "Sky"

RectangleShape.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

Page.add(RectangleShape)

Transparency

You can adjust the transparency of any fill that you apply. The simplest way to
change the transparency of a drawing element is to use the FillTransparence
property.

Chapter 8   Drawings  and Presentations   177



The following example creates a red rectangle with a transparency of 50 percent.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID

RectangleShape.FillTransparence = 50

RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

To make the fill transparent, set the FillTransparence property to 100.

In addition to the FillTransparence property, the
com.sun.star.drawing.FillProperties service also provides the
FillTransparenceGradient property. This is used to define a gradient that
specifies the transparency of a fill area.

Line Properties

All drawing objects that can have a border line support the
com.sun.star.drawing.LineStyle service. Some of the properties that this
service provides are:

 LineStyle (Enum) - line type (default values in accordance with
com.sun.star.drawing.LineStyle)

 LineColor (Long) - line color

178   OpenOffice.org  Basic  Programmer's  Guide



 LineTransparence (Short) - line transparency

 LineWidth (Long) - line thickness in hundredths of a millimeter

 LineJoint (Enum) - transitions to connection points (default values in
accordance with com.sun.star.drawing.LineJoint)

The following example creates a rectangle with a solid border (LineStyle =
SOLID) that is 5 millimeters thick (LineWidth) and 50 percent transparent. The
right and left-hand edges of the line extend to their points of intersect with each
other (LineJoint = MITER) to form a right-angle.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.LineColor = RGB(128,128,128)

RectangleShape.LineTransparence = 50

RectangleShape.LineWidth = 500

RectangleShape.LineJoint = com.sun.star.drawing.LineJoint.MITER

RectangleShape.LineStyle = com.sun.star.drawing.LineStyle.SOLID

Page.add(RectangleShape)

In addition to the listed properties, the com.sun.star.drawing.LineStyle
service provides options for drawing dotted and dashed lines. For more
information, see the StarOffice API reference.

Chapter 8   Drawings  and Presentations   179



Text Properties (Drawing Objects)

The com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties services can format text in
drawing objects. These services relate to individual characters and paragraphs and
are described in detail in Chapter 6 (Text Documents).

The following example inserts text in a rectangle and formats the font
com.sun.star.style.CharacterProperties service.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

RectangleShape.String = "This is a test"

RectangleShape.CharWeight = com.sun.star.awt.FontWeight.BOLD

RectangleShape.CharFontName = "Arial"

This code uses the String-property of the rectangle to insert the text and the
CharWeight and CharFontName properties from the
com.sun.star.style.CharacterProperties service to format the text font.

The text can only be inserted after the drawing object has been added to the
drawing page. You can also use the com.sun.star.drawing.Text service to
position and format text in drawing object. The following are some of the
important properties of this service:

 TextAutoGrowHeight (Boolean) - adapts the height of the drawing element
to the text it contains

180   OpenOffice.org  Basic  Programmer's  Guide



 TextAutoGrowWidth (Boolean) - adapts the width of the drawing element
to the text it contains

 TextHorizontalAdjust (Enum) - horizontal position of text within the
drawing element (default values in accordance with
com.sun.star.drawing.TextHorizontalAdjust)

 TextVerticalAdjust (Enum) - vertical position of text within the drawing
element (default values in accordance with
com.sun.star.drawing.TextVerticalAdjust)

 TextLeftDistance (Long) - left-hand distance between drawing element
and text in hundredths of a millimeter

 TextRightDistance (Long) - right-hand distance between drawing
element and text in hundredths of a millimeter

 TextUpperDistance (Long) - upper distance between drawing element and
text in hundredths of a millimeter

 TextLowerDistance (Long) - lower distance between drawing element
and text in hundredths of a millimeter

The following example demonstrates use of the named properties.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

Page.add(RectangleShape)

Chapter 8   Drawings  and Presentations   181



RectangleShape.String = "This is a test" ' May only take place after

Page.add!

RectangleShape.TextVerticalAdjust =

com.sun.star.drawing.TextVerticalAdjust.TOP

RectangleShape.TextHorizontalAdjust =

com.sun.star.drawing.TextHorizontalAdjust.LEFT

RectangleShape.TextLeftDistance = 300

RectangleShape.TextRightDistance = 300

RectangleShape.TextUpperDistance = 300

RectangleShape.TextLowerDistance = 300

This code inserts a drawing element in a page and then adds text to the top left
corner of the drawing object using the TextVerticalAdjust and
TextHorizontalAdjust properties. The minimum distance between the text
edge of the drawing object is set to three millimeters.

Shadow Properties

You can add a shadow to most drawing objects with the
com.sun.star.drawing.ShadowProperties service. The properties of this
service are:

 Shadow (Boolean) - activates the shadow

 ShadowColor (Long) - shadow color

 ShadowTransparence (Short) - transparency of the shadow

 ShadowXDistance (Long) - vertical distance of the shadow from the
drawing object in hundredths of a millimeter

 ShadowYDistance (Long) - horizontal distance of the shadow from the
drawing object in hundredths of a millimeter

182   OpenOffice.org  Basic  Programmer's  Guide



The following example creates a rectangle with a shadow that is vertically and
horizontally offset from the rectangle by 2 millimeters. The shadow is rendered in
dark gray with 50 percent transparency.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.Shadow = True

RectangleShape.ShadowColor = RGB(192,192,192)

RectangleShape.ShadowTransparence = 50

RectangleShape.ShadowXDistance = 200 

RectangleShape.ShadowYDistance = 200

Page.add(RectangleShape)

Chapter 8   Drawings  and Presentations   183



An Overview of Various Drawing Objects

Rectangle Shapes

Rectangle shape objects (com.sun.star.drawing.RectangleShape) support
the following services for formatting objects:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

 CornerRadius (Long) – radius for rounding corners in hundredths of a
millimeter

Circles and Ellipses

The Service com.sun.star.drawing.EllipseShape service is responsible for
circles and ellipses and supports the following services:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

In addition to these services, circles and ellipses also provide these properties:

 CircleKind (Enum) - type of circle or ellipse (default values in accordance
with com.sun.star.drawing.CircleKind)

 CircleStartAngle (Long) - start angle in tenths of a degree (only for circle
or ellipse segments)

 CircleEndAngle (Long) - end angle in tenths of a degree (only for circle or
ellipse segments)

184   OpenOffice.org  Basic  Programmer's  Guide



The CircleKind property determines if an object is a complete circle, a circular
slice, or a section of a circle. The following values are available:

 com.sun.star.drawing.CircleKind.FULL – full circle or full ellipse

 com.sun.star.drawing.CircleKind.CUT – section of circle (partial circle
whose interfaces are linked directly to one another)

 com.sun.star.drawing.CircleKind.SECTION – circle slice

 com.sun.star.drawing.CircleKind.ARC – angle (not including circle
line)

The following example creates a circular slice with a 70 degree angle (produced
from difference between start angle of 20 degrees and end angle of 90 degrees)

Dim Doc As Object

Dim Page As Object

Dim EllipseShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

EllipseShape = Doc.createInstance("com.sun.star.drawing.EllipseShape")

EllipseShape.Size = Size

EllipseShape.Position = Point

EllipseShape.CircleStartAngle = 2000

EllipseShape.CircleEndAngle = 9000

EllipseShape.CircleKind =  com.sun.star.drawing.CircleKind.SECTION

Page.add(EllipseShape)

Chapter 8   Drawings  and Presentations   185



Lines

StarOffice provides the com.sun.star.drawing.LineShape service for line
objects. Line objects support all of the general formatting services with the
exception of areas. The following are all of the properties that are associated with
the LineShape service:

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

The following example creates and formats a line with the help of the named
properties. The origin of the line is specified in the Location property, whereas
the coordinates listed in the Size property specify the end point of the line.

Dim Doc As Object

Dim Page As Object

Dim LineShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

LineShape = Doc.createInstance("com.sun.star.drawing.LineShape")

LineShape.Size = Size

LineShape.Position = Point

Page.add(LineShape)

186   OpenOffice.org  Basic  Programmer's  Guide



Polypolygon Shapes

StarOffice also supports complex polygonal shapes through the
com.sun.star.drawing.PolyPolygonShape service. Strictly speaking, a
PolyPolygon is not a simple polygon but a multiple polygon. Several independent
lists containing corner points can therefore be specified and combined to form a
complete object.

As with rectangle shapes, all the formatting properties of drawing objects are also
provided for polypolygons:

 Fill properties – com.sun.star.drawing.FillProperties

 Line properties – com.sun.star.drawing.LineProperties

 Text properties – com.sun.star.drawing.Text (with
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

The PolyPolygonShape service also has a property that lets you define the
coordinates of a polygon:

 PolyPolygon (Array) – field containing the coordinates of the polygon
(double array with points of the com.sun.star.awt.Point type)

The following example shows how you can define a triangle with the
PolyPolygonShape service.

Dim Doc As Object

Dim Page As Object

Dim PolyPolygonShape As Object

Dim PolyPolygon As Variant

Dim Coordinates(2) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

PolyPolygonShape = Doc.createInstance

("com.sun.star.drawing.PolyPolygonShape")

Page.add(PolyPolygonShape) ' Page.add must take place before the

coordinates are set

Chapter 8   Drawings  and Presentations   187



Coordinates(0).x = 1000

Coordinates(1).x = 7500

Coordinates(2).x = 10000

Coordinates(0).y = 1000

Coordinates(1).y = 7500

Coordinates(2).y = 5000

PolyPolygonShape.PolyPolygon = Array(Coordinates())

Since the points of a polygon are defined as absolute values, you do not need to
specify the size or the start position of a polygon. Instead, you need to create an
array of the points, package this array in a second array (using the Array
(Coordinates() call), and then assign this array to the polygon. Before the
corresponding call can be made, the polygon must be inserted into the document.

The double array in the definition allows you to create complex shapes by
merging several polygons. For example, you can create a rectangle and then insert
another rectangle inside it to create a hole in the original rectangle:

Dim Doc As Object

Dim Page As Object

Dim PolyPolygonShape As Object

Dim PolyPolygon As Variant

Dim Square1(3) As New com.sun.star.awt.Point

Dim Square2(3) As New com.sun.star.awt.Point

Dim Square3(3) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

PolyPolygonShape = Doc.createInstance

("com.sun.star.drawing.PolyPolygonShape")

Page.add(PolyPolygonShape) ' Page.add must take place before the

coordinates are set

Square1(0).x = 5000

Square1(1).x = 10000

Square1(2).x = 10000

Square1(3).x = 5000

Square1(0).y = 5000

Square1(1).y = 5000

Square1(2).y = 10000

188   OpenOffice.org  Basic  Programmer's  Guide



Square1(3).y = 10000

Square2(0).x = 6500

Square2(1).x = 8500

Square2(2).x = 8500

Square2(3).x = 6500

Square2(0).y = 6500

Square2(1).y = 6500

Square2(2).y = 8500

Square2(3).y = 8500

Square3(0).x = 6500

Square3(1).x = 8500

Square3(2).x = 8500

Square3(3).x = 6500

Square3(0).y = 9000

Square3(1).y = 9000

Square3(2).y = 9500

Square3(3).y = 9500

PolyPolygonShape.PolyPolygon = Array(Square1(), Square2(), Square3())

With respect as to which areas are filled and which areas are holes, StarOffice
applies a simple rule: the edge of the outer shape is always the outer border of the
polypolygon. The next line inwards is the inner border of the shape and marks the
transition to the first hole. If there is another line inwards, it marks the transition
to a filled area.

Graphics

The last of the drawing elements presented here are graphic objects that are based
on the com.sun.star.drawing.GraphicObjectShape service. These can be
used with any graphic within StarOffice whose appearance can be adapted using a
whole range of properties.

Graphic objects support two of the general formatting properties:

 Text properties – com.sun.star.drawing.Text (with
com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties – com.sun.star.drawing.ShadowProperties

Chapter 8   Drawings  and Presentations   189



Additional properties that are supported by graphic objects are:

 GraphicURL (String) - URL of the graphic

 AdjustLuminance (Short) - luminance of the colors, as a percentage
(negative values are also permitted)

 AdjustContrast (Short) - contrast as a percentage (negative values are
also permitted)

 AdjustRed (Short) - red value as a percentage (negative values are also
permitted)

 AdjustGreen (Short) - green value as a percentage (negative values are
also permitted)

 AdjustBlue (Short) - blue value as a percentage (negative values are also
permitted)

 Gamma (Short) - gamma value of a graphic

 Transparency (Short) - transparency of a graphic as a percentage

 GraphicColorMode (enum) - color mode, for example, standard, gray
stages, black and white (default value in accordance with
com.sun.star.drawing.ColorMode)

The following example shows how to insert a page into a graphics object.Dim Doc
As Object

Dim Page As Object

Dim GraphicObjectShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000 ' specifications, insignificant because latter 

coordinates are binding

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

GraphicObjectShape = Doc.createInstance

("com.sun.star.drawing.GraphicObjectShape")

190   OpenOffice.org  Basic  Programmer's  Guide



GraphicObjectShape.Size = Size

GraphicObjectShape.Position = Point

GraphicObjectShape.GraphicURL = "file:///c:/test.jpg"

GraphicObjectShape.AdjustBlue = -50

GraphicObjectShape.AdjustGreen = 5

GraphicObjectShape.AdjustBlue = 10

GraphicObjectShape.AdjustContrast = 20

GraphicObjectShape.AdjustLuminance = 50

GraphicObjectShape.Transparency = 40

GraphicObjectShape.GraphicColorMode =

com.sun.star.drawing.ColorMode.STANDARD

Page.add(GraphicObjectShape)

This code inserts the test.jpg graphic and adapts its appearance using the
Adjust properties. In this example, the graphics are depicted as 40 percent
transparent with no other color conversions do not take place
(GraphicColorMode = STANDARD).

Editing Drawing Objects

Grouping Objects
In many situations, it is useful to group several individual drawing objects
together so that they behave as a single large object.

The following example combines two drawing objects:

Dim Doc As Object

Dim Page As Object

Dim Square As Object

Dim Circle As Object

Dim Shapes As Object

Dim Group As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Dim NewPos As New com.sun.star.awt.Point

Dim Height As Long

Dim Width As Long

Chapter 8   Drawings  and Presentations   191



Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

Point.x = 3000

Point.y = 3000

Size.Width = 3000

Size.Height = 3000

' create square drawing element

Square = Doc.createInstance("com.sun.star.drawing.RectangleShape")

Square.Size = Size

Square.Position = Point

Square.FillColor = RGB(255,128,128) 

Page.add(Square)

' create circle drawing element

Circle = Doc.createInstance("com.sun.star.drawing.EllipseShape")

Circle.Size = Size

Circle.Position = Point

Circle.FillColor = RGB(255,128,128) 

Circle.FillColor = RGB(0,255,0)

Page.add(Circle)

' combine square and circle drawing elements

Shapes = createUnoService("com.sun.star.drawing.ShapeCollection")

Shapes.add(Square)

Shapes.add(Circle)

Group = Page.group(Shapes)

' centre combined drawing elements

Height = Page.Height

Width = Page.Width

NewPos.X = Width / 2

NewPos.Y = Height / 2

Height = Group.Size.Height

Width = Group.Size.Width

NewPos.X = NewPos.X - Width / 2

NewPos.Y = NewPos.Y - Height / 2

Group.Position = NewPos

This code creates a rectangle and a circle and inserts them into a page. It then
creates an object that supports the
com.sun.star.drawing.ShapeCollection service and uses the Add method
to add the rectangle and the circle to this object. The ShapeCollection is added
to the page using the Group method and returns the actual Group object that can
be edited like an individual Shape.

192   OpenOffice.org  Basic  Programmer's  Guide



If you want to format the individual objects of a group, apply the formatting
before you add them to the group. You cannot modify the objects once they are in
the group.

Rotating and Shearing Drawing Objects
All of the drawing objects that are described in the previous sections can also be
rotated and sheared using the
com.sun.star.drawing.RotationDescriptor service.

The service provides the following properties:

 RotateAngle (Long) – rotary angle in hundredths of a degree

 ShearAngle (Long) – shear angle in hundredths of a degree

The following example creates a rectangle and rotates it by 30 degrees using the
RotateAngle property:

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.RotateAngle = 3000

Page.add(RectangleShape)

The next example creates the same rectangle as in the previous example, but instead
shears it through 30 degrees using the ShearAngle property.

Dim Doc As Object

Dim Page As Object

Dim RectangleShape As Object

Chapter 8   Drawings  and Presentations   193



Dim Point As New com.sun.star.awt.Point

Dim Size As New com.sun.star.awt.Size

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")

RectangleShape.Size = Size

RectangleShape.Position = Point

RectangleShape.ShearAngle = 3000

Page.add(RectangleShape)

Searching and Replacing
As in text documents, drawing documents provide a function for searching and
replace. This function is similar to the one that is used in text documents as
described in Chapter 6, Text Documents. However, in drawing documents the
descriptor objects for searching and replacing are not created directly through the
document object, but rather through the associated character level. The following
example outlines the replacement process within a drawing:

Dim Doc As Object

Dim Page As Object

Dim ReplaceDescriptor As Object

Dim I As Integer

Doc = StarDesktop.CurrentComponent

Page = Doc.drawPages(0)

ReplaceDescriptor = Page.createReplaceDescriptor()

ReplaceDescriptor.SearchString = "is"

ReplaceDescriptor.ReplaceString = "was"

For I = 0 to Doc.drawPages.Count - 1

Page = Doc.drawPages(I)

Page.ReplaceAll(ReplaceDescriptor) 

Next I

194   OpenOffice.org  Basic  Programmer's  Guide



This code uses the first DrawPage of the document to create a
ReplaceDescriptor and then applies this descriptor in a loop to all of the
pages in the drawing document.

Presentations
StarOffice presentations are based on drawing documents. Each page in the
presentation is a slide. You can access slides in the same way as a standard drawing
is accessed through the DrawPages list of the document object. The
com.sun.star.presentation.PresentationDocument service,  responsible
for presentation documents, also provides the complete
com.sun.star.drawing.DrawingDocument service.

Working With Presentations
In addition to the drawing functions that are provided by the Presentation
property, the presentation document has a presentation object that provides access
to the main properties and control mechanisms for presentations. For example,
this object provides a start method that can  start presentations.

Dim Doc As Object

Dim Presentation As Object

Doc = StarDesktop.CurrentComponent

Presentation = Doc.Presentation

Presentation.start()

The code used in this example creates a Doc object that references the current
presentation document and establishes the associated presentation object. The
start()method of the object is used to start the example and run the screen
presentation.

The following methods are provided as presentation objects:

 start - starts the presentation

 end - ends the presentation

 rehearseTimings - starts the presentation from the beginning and
establishes its runtime

The following properties are also available: 

 AllowAnimations (Boolean) – runs animations in the presentation

Chapter 8   Drawings  and Presentations   195



 CustomShow (String) – allows you to specify the name of the presentation
so that you can reference the name in the presentation

 FirstPage (String) – name of slide that you want to start the presentation
with

 IsAlwaysOnTop (Boolean) – always displays the presentation window as
the first window on the screen

 IsAutomatic (Boolean) – automatically runs through the presentation

 IsEndless (Boolean) – restarts the presentation from the beginning once it
ends

 IsFullScreen (Boolean) – automatically starts the presentation in full
screen mode

 IsMouseVisible (Boolean) – displays the mouse during the presentation

 Pause (long) – the amount of time that a blank screen is displayed at the
end of the presentation

 StartWithNavigator (Boolean) – displays the navigator window when
the presentation starts

 UsePn (Boolean) – displays the pointer during the presentation

196   OpenOffice.org  Basic  Programmer's  Guide



9 Diagrams (Charts)
StarOffice can display data as a diagram, which creates graphical links between
data in the form of bars, pie charts, lines or other elements. Data can either be
displayed as 2D or 3D graphics, and the appearance of the diagram elements can
be individually adapted in a similar way to the process used for drawing
elements.

If the data is available in the form of a spreadsheet, then this can be dynamically
linked to the diagram. Any modifications made to the basic data can in this instance
be seen immediately in the assigned diagram. This chapter provides an overview of
the programming interface for diagram modules of StarOffice and focuses on the
use of diagrams within spreadsheet documents.

Using Diagrams in Spreadsheets
Diagrams are not treated as independent documents in StarOffice, but as objects
that are embedded in an existing document.

While diagrams in text and drawing documents remain isolated from the content
of the document, when used in spreadsheet documents, a mechanism is provided
which allows a link to be established between the document data and embedded
diagrams. The following example explains the interaction between spreadsheet
document and diagram:

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

197

CHAPTER  9



Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0 

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Although the code used in the example may appear to be complex, the central
processes are limited to three lines: the first central line creates the Doc document
variable, which references the current spreadsheet document (Doc line =
StarDesktop.CurrentComponent). The code used in the example then creates a
list containing all charts of the first spreadsheet (Charts line = Doc.Sheets(0).
Charts). Finally, a new chart is added to the last line of this list using the
addNewByName method. This new chart is then visible to the user.

The last line initializes the Rect and RangeAddress auxiliary structures, which
the addNewByName method also provides as a parameter. Rect determines the
position of the chart within the spreadsheet. RangeAddress determines the range
whose data is to be linked to the chart.

The previous example creates a bar diagram. If a different type of graphic is
needed, then the bar diagram must be explicitly replaced:

Chart = Charts.getByName("MyChart").embeddedObject

Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")

The first lines defines the corresponding chart object. The second line replaces the
current diagram with a new one – in this example, a line diagram.

In Excel, a distinc tion  is made between charts  which  have been inserted  as a
separate page in an Excel  document  and charts  which  are embedded in a table
page. Correspondingly,  two different  access  methods  are defined  there for  charts.
This  distinction  is not  made in StarOffice Basic,  because charts  in StarOffice Calc
are always  created as embedded objects  of a table page. The charts  are always
accessed using  the Charts list  of the associated  Sheet object.

198   OpenOffice.org  Basic  Programmer's  Guide



The Structure of Diagrams
The structure of a diagram – and therefore the list of services and interfaces
supported by it – depends on its type. The methods and properties of the Z-axis,
are, for example, only available in 3D diagrams, but not in 2D diagrams. In pie
charts, there are no interfaces for working with axes.

The Individual Elements of a Diagram

Title, Sub-title and Key

A title, sub-title and key form part of the basic elements of every diagram.
Diagrams provide their own objects for each of these elements. The Chart object
provides the following properties for administrating these elements:

 HasMainTitle (Boolean) – activates the title.

 Title (Object) – object with detailed information about the diagram title
(supports the com.sun.star.chart.ChartTitle service).

 HasSubTitle(Boolean) – activates the sub-title.

 Subtitle (Object) – object with detailed information about the diagram
sub-title (supports the com.sun.star.chart.ChartTitle service).

 HasLegend (Boolean) – activates the key.

 Legend (Object) – object with detailed information about the key to the
diagram (supports the com.sun.star.chart.ChartLegendPosition
service).

In many respects, the elements specified correspond to a drawing element. This is
due to the fact that both the com.sun.star.chart.ChartTitle service and the
com.sun.star.chart.ChartLegendPosition support the
com.sun.star.drawing.Shape service, which forms the technical program
basis for drawing elements.

Users therefore have the opportunity to determine the position and size of the
element using the Size and Position properties. 

The other fill and line properties (com.sun.star.drawing.FillProperties
and com.sun.star.drawing.LineStyle services) as well as the character

Chapter 9   Diagrams (Charts)  199



properties (com.sun.star.style.CharacterProperties service) are
provided for formatting the elements.

com.sun.star.chart.ChartTitle contains not only the named format
properties, but also two other properties:

 TextRotation (Long) – angle of rotation of text in 100ths of a degree.

 String (String) – text which to be displayed as the title or sub-title.

The diagram key (com.sun.star.chart.ChartLegend service) contains the
following additional property:

 Alignment (Enum) – position at which the key appears (default value in
accordance with com.sun.star.chart.ChartLegendPosition).

The following example creates a diagram and assigns it the title "Test", the sub-title
"Test 2" and a key. The key has a gray background color, is placed at the bottom of
the diagram, and has a character size of 7 points.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0 

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").EmbeddedObject

Chart.HasMainTitle = True

200   OpenOffice.org  Basic  Programmer's  Guide



Chart.Title.String = "Test"

Chart.HasSubTitle = True

Chart.Subtitle.String = "Test 2"

Chart.HasLegend = True 

Chart.Legend.Alignment = com.sun.star.chart.ChartLegendPosition.BOTTOM

Chart.Legend.FillStyle = com.sun.star.drawing.FillStyle.SOLID

Chart.Legend.FillColor = RGB(210, 210, 210)

Chart.Legend.CharHeight = 7

Background

Every diagram has a background area. Every area has an object, which can be
accessed using the following properties of the diagram object:

 Area (Object) – background area of the diagram (supports
com.sun.star.chart.ChartArea service).

The background of a diagram covers its complete area, including the area under
the title, sub-title and diagram key. The associated
com.sun.star.chart.ChartArea service supports line and fill properties and
provides no more extensive properties.

Diagram Walls and Floors

Although the diagram background covers the entire area of the diagram, the
diagram back wall is limited to the area directly behind the data area.

Two diagram walls usually exist for 3D diagrams: one behind the data area and
one as the left-hand demarcation to the Y-axis. 3D diagrams usually also have a
floor.

 Floor (Object) – floor panel of the diagram (only for 3D diagrams,
supports com.sun.star.chart.ChartArea service).

 Wall (Object) – diagram walls (only for 3D diagrams, supports
com.sun.star.chart.ChartArea service).

The specified objects support the com.sun.star.chart.ChartArea service,
which in turn provides the usual fill and line properties

Chapter 9   Diagrams (Charts)  201



(com.sun.star.drawing.FillProperties and
com.sun.star.drawing.LineStyle services, refer to Chapter 8).

The diagram walls and floor are accessed through the Chart object, which in
turn is part of the Chart object:

Chart.Area.FillBitmapName = "Sky"

The following example shows how graphics (named Sky) already contained in
StarOffice can be used as a background to a diagram.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0 

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").EmbeddedObject

Chart.Area.FillStyle = com.sun.star.drawing.FillStyle.BITMAP

Chart.Area.FillBitmapName = "Sky"

Chart.Area.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

202   OpenOffice.org  Basic  Programmer's  Guide



Axes

StarOffice recognizes five different axes that can be used in a diagram. In the
simplest scenario, these are the X and Y-axes. When working with 3D diagrams, a
Z-axis is also sometimes provided. For diagrams in which the values of the
various rows of data deviate significantly from one another, StarOffice provides a
second X and Y-axis for second scaling operations.

First X, Y and Z-Axis

In addition to the actual axis, for each of the first X, Y and Z-axes there can also be a
title, a description, a grid, and an auxiliary grid. There is an option for displaying
and concealing all of these elements. The diagram object provides the following
properties for administration of these features (taking the example of a X-axis;
properties for Y and Z-axis are structured in the same way):

 HasXAxis (Boolean) – activates the X-axis.

 XAxis (Object) – object with detailed information about the X-axis
(supports com.sun.star.chart.ChartAxis service).

 HasXAxisDescription (Boolean) – activates description for the X-axis.

 HasXAxisGrid (Boolean) – activates main grid for X-axis.

 XMainGrid (Object) – object with detailed information about main grid for
X-axis (supports com.sun.star.chart.ChartGrid service).

 HasXAxisHelpGrid (Boolean) – activates auxiliary grid for X-axis.

 XHelpGrid (Object) – object with detailed information about auxiliary grid
for X-axis (supports com.sun.star.chart.ChartGrid service).

 HasXAxisTitle (Boolean) – activates title of X-axis.

 XAxisTitle (Object) – object with detailed information about title of X-
axis (supports com.sun.star.chart.ChartTitle service).

Second X and Y-Axis

The following properties are available for the second X and Y-axes (properties
taking example of the second X-axis):

 HasSecondaryXAxis (Boolean) – activates the second X-axis.

Chapter 9   Diagrams (Charts)  203



 SecondaryXAxis (Object) – object with detailed information about the
second X-axis (supports com.sun.star.chart.ChartAxis service).

 HasSecondaryXAxisDescription (Boolean) – activates description of
X-axis.

Properties of the Axes

The axis objects of a StarOffice diagram support the
com.sun.star.chart.ChartAxis service. In addition to the properties for
characters (com.sun.star.style.CharacterProperties service, refer to
Chapter 6) and lines (com.sun.star.drawing.LineStyle service, refer to
Chapter 8), it provides the following properties:

 Max (Double) - maximum value for axis.

 Min (Double) - minimum value for axis.

 Origin (Double) - point of intersect for crossing axes.

 StepMain (Double) - distance between two primary lines of the axis.

 StepHelp (Double) - distance between two secondary lines of the axis.

 AutoMax (Boolean) - automatically determines maximum value for axis.

 AutoMin (Boolean) - automatically determines minimum value for axis.

 AutoOrigin (Boolean) - automatically determines point of intersect for
crossing axes.

 AutoStepMain (Boolean) - automatically determines distance between
primary lines of an axis.

 AutoStepHelp (Boolean) - automatically determines distance between
secondary lines of an axis.

 Logarithmic (Boolean) - scales the axes in logarithmic manner (rather than
linear manner).

 DisplayLabels (Boolean) - activates the text label for axes.

 TextRotation (Long) - angle of rotation of text label of axes in 100ths of a
degree.

 Marks (Const) - constant that specifies whether the primary lines of the axis
should be inside or outside the diagram area (default values in accordance with
com.sun.star.chart.ChartAxisMarks)

204   OpenOffice.org  Basic  Programmer's  Guide



 HelpMarks (Const) - constant that specifies whether the secondary lines of
the axis should be inside and/or outside the diagram area (default values in
accordance with com.sun.star.chart.ChartAxisMarks)

 Overlap (Long) - percentage which specifies the extent to which the bars of
different sets of data may overlap (at 100%, the bars are shown as completely
overlapping, at -100%, there is a distance of the width of one bar between
them).

 GapWidth (long) - percentage which specifies the distance there may be
between the different groups of bars of a chart (at 100%, there is a distance
corresponding to the width of one bar).

 ArrangeOrder (enum) - details of position of inscription; in addition to
positioning on a line, there is also the option of splitting the label alternately
over two lines (default value according to
com.sun.star.chart.ChartAxisArrangeOrderType)

 TextBreak (Boolean) - permits line breaks.

 TextCanOverlap (Boolean) - permits text overlaps.

 NumberFormat (Long) - number format (refer to Chapter 7, Number, Date
and Text Format section)

Properties of the axis grid

The object for the axis grid is based on the com.sun.star.chart.ChartGrid
service, which in turn supports the line properties of the
com.sun.star.drawing.LineStyle support service (refer to Chapter 8).

Properties of the axis title

The objects for formatting the axis title are based on the
com.sun.star.chart.ChartTitle service, which is also used for diagram
titles.

Chapter 9   Diagrams (Charts)  205



Example
The following example creates a line diagram. The color for the rear wall of the
diagram is set to white. Both the X and Y-axes have a gray auxiliary grid for visual
orientation. The minimum value of the Y-axis is fixed to 0 and the maximum value
is fixed to 100 so that the resolution of the diagram is retained even if the values
are changed.

Dim Doc As Object

Dim Charts As Object

Dim Chart as Object

Dim Rect As New com.sun.star.awt.Rectangle

Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts

Rect.X = 8000

Rect.Y = 1000

Rect.Width = 10000

Rect.Height = 7000

RangeAddress(0).Sheet = 0

RangeAddress(0).StartColumn = 0 

RangeAddress(0).StartRow = 0

RangeAddress(0).EndColumn = 2

RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Chart = Charts.getByName("MyChart").embeddedObject

Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")

Chart.Diagram.Wall.FillColor = RGB(255, 255, 255)

Chart.Diagram.HasXAxisGrid = True

Chart.Diagram.XMainGrid.LineColor = RGB(192, 192, 192)

Chart.Diagram.HasYAxisGrid = True

Chart.Diagram.YMainGrid.LineColor = RGB(192, 192, 192)

Chart.Diagram.YAxis.Min = 0 

Chart.Diagram.YAxis.Max = 100

206   OpenOffice.org  Basic  Programmer's  Guide



3D Diagrams
Most diagrams in StarOffice can also be displayed with 3D graphics. All diagram
types that provide this option support the
com.sun.star.chart.Dim3DDiagram. service. The service provides just one
property:

 Dim3D (Boolean) – activates 3D display.

Stacked Diagrams
Stacked diagrams are diagrams that are arranged with several individual values
on top of one another to produce a total value. This view shows not only the
individual values, but also an overview of all the values.

In StarOffice, various types of diagrams can be displayed in a stacked form. All of
these diagrams support the com.sun.star.chart.StackableDiagram
service, which in turn provides the following properties:

 Stacked (Boolean) – activates the stacked viewing mode.

 Percent (Boolean) – rather than absolute values, displays their percentage
distribution.

Chapter 9   Diagrams (Charts)  207



Diagram Types

Line Diagrams
Line diagrams (Service com.sun.star.chart.LineDiagram) support one X-
axis, two Y-axes and one Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The lines can be stacked
(com.sun.star.chart.StackableDiagram).

Line diagrams provide the following properties:

 SymbolType (const) - symbol for displaying the data points (constant in
accordance with com.sun.star.chart.ChartSymbolType).

 SymbolSize (Long) - size of symbol for displaying the data points in 100ths
of a millimeter.

 SymbolBitmapURL (String) - file name of graphics for displaying the data
points.

 Lines (Boolean) - links the data points by means of lines.

 SplineType (Long) - spline function for smoothing the lines (0: no spline
function, 1: cubic splines, 2: B splines).

 SplineOrder (Long) - polynomial weight for splines (only for B splines).

 SplineResolution (Long) - number of support points for spline
calculation.

Area Diagrams
Area diagrams (com.sun.star.chart.AreaDiagram service) support one X-
axis, two Y-axes and one Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The areas can be stacked
(com.sun.star.chart.StackableDiagram).

208   OpenOffice.org  Basic  Programmer's  Guide



Bar Diagrams
Bar diagrams (Service com.sun.star.chart.BarDiagram) support one X-axis,
two Y-axes and one Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The bars can be stacked
(com.sun.star.chart.StackableDiagram).

They provide the following properties:

 Vertical (Boolean) – displays the bars vertically, otherwise they are
depicted horizontally.

 Deep (Boolean) - in 3D viewing mode, positions the bars behind one
another rather than next to one another.

 StackedBarsConnected (Boolean) - links the associated bars in a stacked
diagram by means of lines (only available with horizontal charts).

 NumberOfLines (Long) - number of lines to be displayed in a stacked
diagram as lines rather than bars.

Pie Diagrams
Pie diagrams (com.sun.star.chart.PieDiagram service) do not contain any
axes and cannot be stacked. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service).

Chapter 9   Diagrams (Charts)  209



210   OpenOffice.org  Basic  Programmer's  Guide



10 Database Access
StarOffice has an integrated database interface (independent of any systems)
called Star Database Connectivity (SDBC). The objective of developing this
interface was to provide access to as many different data sources as possible.

To make this possible, data sources are accessed by drivers. The sources from
which the drivers take their data is irrelevant to a SDBC user. Some drivers access
file-based databases and take the data directly from them. Others use standard
interfaces such as JDBC or ODBC. There are, however, also special drivers which
access the MAPI address book, LDAP directories or StarOffice spreadsheets as
data sources.

Since the drivers are based on UNO components, other drivers can be developed
and therefore open up new data sources. You will find details about this in the
StarOffice Developer's Guide.

In terms of its  concept,  SDBC is comparable with  the ADO and DAO libraries
available in VBA. It permits  high  level  access  to databases, regardless  of the
underlying  database backends.

The database interface of StarOffice has grown  through  the launch  of StarOffice 7.
Although  in the past, databases were primarily  accessed using  a range of methods
of the Application object,  the interface in StarOffice 7 sub-divides  into  several

objects.  A DatabaseContext is  used as the root  object  for  the database

functions.

211

CHAPTER  10



SQL: a Query Language
The SQL language is provided as a query language for users of SDBC. To compare
the differences between different SQL dialects, the SDBC components from
StarOffice have their own SQL parser. This uses the query window to check the
SQL commands typed and corrects simple syntax errors, such as those associated
with uppercase and lowercase characters.

If a driver permits access to a data source that does not support SQL, then it must
independently convert the transferred SQL commands to the native access needed.

SQL implementation  from SDBC is oriented  towards  the SQL-ANSI-Standard.
Microsoft-specific  extensions,  such  as the INNER JOIN construct  are not

supported.  These should  be replaced with  standard  commands  (INNER JOIN, for

example should  be replaced with  a corresponding  WHERE clause).

Types of Database Access
The database interface from StarOffice is available in the StarOffice Writer and
StarOffice Calc applications, as well as in the database forms.

In StarOffice Writer, standard letters can be created with the assistance of SDBC
data sources and these can then be printed out. There is also an option for moving
data from the database window into text documents using the drag-and-drop
function.

If the user moves a database table into a spreadsheet, StarOffice creates a table
area which can be updated at the click of the mouse if the original data has been
modified. Conversely, spreadsheet data can be moved to a database table and a
database import performed.

Finally, StarOffice provides a mechanism for forms based on databases. To do this,
the user first creates a standard StarOffice Writer or StarOffice Calc form and then
links the fields to a database.

All the options specified here are based on the user interface from StarOffice. No
programming knowledge is needed to use the corresponding functions.

212   OpenOffice.org  Basic  Programmer's  Guide



This chapter, however, provides little information about the functions specified,
but instead concentrates on the programming interface from SDBC, which allows
for automated database querying and therefore permits a much greater range of
applications to be used.

Basic knowledge of the way in which databases function and the SQL query
language is however needed to fully understand the following sections.

Data Sources
A database is incorporated into StarOffice by creating what is commonly referred
to as a data source. The user interface provides a corresponding option for creating
data sources in the Extras menu. However, you also can create data sources and
work with them using StarOffice Basic.

A database context object that is created using the createUnoService function
serves as the starting point for accessing a data source. This based on the
com.sun.star.sdb.DatabaseContext service and is the root object for all
database operations.

The following example shows how a database context can be created and then
used to determine the names of all data sources available. It displays the names in
a message box.

Dim DatabaseContext As Object

Dim Names

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

Names = DatabaseContext.getElementNames()

For I = 0 To UBound(Names())

MsgBox Names(I)

Next I

The individual data sources are based on the com.sun.star.sdb.DataSource
service and can be determined from the database context using the getByName
method:

Chapter 10   Database Access  213



Dim DatabaseContext As Object

Dim DataSource As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

The example creates a DataSource object for a data source called Customers.

Data sources provide a range of properties, which in turn provide general
information about the origin of the data and information about access methods.
The properties are:

 Name (String) – name of data source.

 URL (String) – URL of data source in the form of jdbc: subprotocol : subname
or sdbc: subprotocol : subname.

 Info (Array) – array containing PropertyValue-pairs with connection
parameters (usually at least user name and password).

 User (String) – user name.

 Password (String) – user password (is not saved).

 IsPasswordRequired (Boolean) – the password is needed and is
interactively requested from user.

 IsReadOnly (Boolean) – permits read-only access to the database.

 NumberFormatsSupplier (Object) – object containing the number
formats available for the database (supports the
com.sun.star.util.XNumberFormatsSupplier interface, refer to
Chapter 7, Number, Date and Text Format section).

 TableFilter (Array) – list of table names to be displayed.

 TableTypeFilter (Array) – list of table types to be displayed. Values
available are TABLE, VIEW and SYSTEM TABLE.

 SuppressVersionColumns (Boolean) - suppresses the display of
columns that are used for version administration.

The data sources  from StarOffice are not 1:1 comparable with  the data sources  in
ODBC. Whereas an ODBC data source only  covers  information  about  the origin  of
the data, a data source in StarOffice also includes  a range of information  about  how
the data is displayed within  the database windows  of StarOffice.

214   OpenOffice.org  Basic  Programmer's  Guide



Queries
Predefined queries can be assigned to a data source. StarOffice notes the SQL
commands of queries so that they are available at all times. Queries are used to
simplify working with databases because they can be opened with a simple mouse
click and also provide users without any knowledge of SQL with the option of
issuing SQL commands.

An object which supports the com.sun.star.sdb.QueryDefinition service
is concealed behind a query. The queries are accessed by means of the
QueryDefinitions method of the data source.

The following example lists the names of data source queries can be established in
a message box.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim QueryDefinitions As Object

Dim QueryDefinition As Object

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

QueryDefinitions = DataSource.getQueryDefinitions()

For I = 0 To QueryDefinitions.Count() - 1

QueryDefinition = QueryDefinitions(I)

MsgBox QueryDefinition.Name

Next I

In addition to the Name property used in the example, the
com.sun.star.sdb.QueryDefinition provides a whole range of other
properties. These are:

 Name (String) – query name.

 Command (String) – SQL command (typically a SELECT command).

 UpdateTableName (String) – for queries that are based on several tables:
name of table in which value modifications are possible.

 UpdateCatalogName (String) – name of update tables catalogues.

 UpdateSchemaName (String) – name of update tables diagrams.

Chapter 10   Database Access  215



The following example shows how a query object can be created in a program-
controlled manner and can be assigned to a data source.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim QueryDefinitions As Object

Dim QueryDefinition As Object

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

QueryDefinitions = DataSource.getQueryDefinitions()

QueryDefinition = createUnoService("com.sun.star.sdb.QueryDefinition")

QueryDefinition.Command = "SELECT * FROM Customer"

QueryDefinitions.insertByName("NewQuery", QueryDefinition)

The query object is first created using the createUnoService call, then
initialized, and then inserted into the QueryDefinitions object by means of
insertByName.

Links with Database Forms
To simplify work with data sources, StarOffice provides an option for linking the
data sources with database forms. The links are available through the
getBookmarks()method. This returns a named container
(com.sun.star.sdb.DefinitionContainer) which contains all links of the
data source. The bookmarks can either be accessed through Name or Index.

The following example determines the URL of the MyBookmark bookmark.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Bookmarks As Object

Dim URL As String

Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

Bookmarks = DataSource.Bookmarks()

URL = Bookmarks.getByName("MyBookmark")

MsgBox URL

216   OpenOffice.org  Basic  Programmer's  Guide



Database Access
A database connection is needed for access to a database. This is a transfer channel
which permits direct communication with the database. Unlike the data sources
presented in the previous section, the database connection must therefore be re-
established every time the program is restarted.

StarOffice provides various ways of establishing database connections. Here is an
explanation for the method based on an existing data source.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Connection As Object

Dim InteractionHandler as Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then

Connection = DataSource.GetConnection("","")

Else

InteractionHandler = createUnoService

("com.sun.star.sdb.InteractionHandler")

Connection = DataSource.ConnectWithCompletion(InteractionHandler)

End If

The code used in the example first checks whether the database is password
protected. If not, it creates the database connection required using the
GetConnection call. The two empty strings in the command line stand for the
user name and password.

If the database is password protected, the example creates an
InteractionHandler and opens the database connection using the
ConnectWithCompletion method. The InteractionHandler ensures that
StarOffice asks the user for the required login data.

Chapter 10   Database Access  217



Iteration of Tables
A table is usually accessed in StarOffice through the ResultSet object. A
ResultSet is a type of marker that indicates a current set of data within a
volume of results obtained using the SELECT command.

The example shows how a ResultSet can be used to query values from a
database table.

Dim DatabaseContext As Object

Dim DataSource As Object

Dim Connection As Object

Dim InteractionHandler as Object

Dim Statement As Object

Dim ResultSet As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then

Connection = DataSource.GetConnection("","")

Else

InteractionHandler = createUnoService

("com.sun.star.sdb.InteractionHandler")

Connection = DataSource.ConnectWithCompletion(InteractionHandler)

End If

Statement = Connection.createStatement()

ResultSet = Statement.executeQuery("SELECT CustomerNumber FROM Customer")

If Not IsNull(ResultSet) Then

While ResultSet.next

MsgBox ResultSet.getString(1)

Wend

End If

Once the database connection has been established, the code used in the example
first uses the Connection.createObject call to create a Statement object.
This Statement object then uses the executeQuery call to return the actual
ResultSet. The program now checks whether the ResultSet actually exists
and traverses the data records using a loop. The values required (in the example,
those from the CustomerNumber field) returns the ResultSet using the

218   OpenOffice.org  Basic  Programmer's  Guide



getString method, whereby the parameter 1 determines that the call relates to
the values of the first column.

The ResultSet object  from SDBC is comparable with  the Recordset object  from

DAO and ADO, since this  also provides  iterative access  to a database.

The database is actually  accessed in StarOffice 7 through  a ResultSet object.

This  reflects  the content  of a table or the result  of a SQL-SELECT command.  In the
past, the ResultSet object  provided  the resident  methods  in the Application

object  for  navigation  within  the data (e.g DataNextRecord).

Type-Specific Methods for Retrieving Values
As can be seen in the example from the previous section, StarOffice provides a
getString method for accessing table contents. The method provides the result
in the form of a string. The following get methods are available:

 getByte() – supports the SQL data types for numbers, characters and strings.

 getShort() – supports the SQL data types for numbers, characters and
strings.

 getInt() – supports the SQL data types for numbers, characters and strings.

 getLong() – supports the SQL data types for numbers, characters and strings.

 getFloat() – supports the SQL data types for numbers, characters and
strings.

 getDouble() – supports the SQL data types for numbers, characters and
strings.

 getBoolean() – supports the SQL data types for numbers, characters and
strings.

 getString() – supports all SQL data types.

 getBytes() – supports the SQL data types for binary values.

 getDate() – supports the SQL data types for numbers, strings, date and time
stamp.

 getTime() – supports the SQL data types for numbers, strings, date and time
stamp.

Chapter 10   Database Access  219



 getTimestamp() – supports the SQL data types for numbers, strings, date
and time stamp.

 getCharacterStream() – supports the SQL data types for numbers, strings
and binary values.

 getUnicodeStream() – supports the SQL data types for numbers, strings
and binary values.

 getBinaryStream() – binary values.

 getObject() – supports all SQL data types.

In all instances, the number of columns should be listed as a parameter whose
values should be queried.

The ResultSet Variants
Accessing databases is often a matter of critical speed. StarOffice therefore provides
several ways of optimizing ResultSets and thereby controlling the speed of access.
The more functions a ResultSet provides, the more complex its implementation
usually is and therefore the slower the functions are.

A simple ResultSet, such as that which was presented in the "Iteration of tables"
section, provides the minimum scope of functions available. It only allows
iteration to be applied forward, and for values to be interrogated. More extensive
navigation options, such as the possibility of modifying values, are therefore not
included.

The Statement object used to create the ResultSet provides some properties
which allow the functions of the ResultSet to be influenced:

 ResultSetConcurrency (const) – specifications as to whether the data
can be modified  (specifications in accordance with
com.sun.star.sdbc.ResultSetConcurrency).

 ResultSetType (const) – specifications regarding type of ResultSets (
specifications in accordance with com.sun.star.sdbc.ResultSetType).

The values defined in com.sun.star.sdbc.ResultSetConcurrency are:

 UPDATABLE - ResultSet permits values to be modified.

 READ_ONLY – ResultSet does not permit modifications.

220   OpenOffice.org  Basic  Programmer's  Guide



The com.sun.star.sdbc.ResultSetConcurrency group of constants
provides the following specifications:

 FORWARD_ONLY – ResultSet only permits forward navigation.

 SCROLL_INSENSITIVE – ResultSet permits any type of navigation, changes
to the original data are, however, not noted.

 SCROLL_SENSITIVE – ResultSet permits any type of navigation, changes to
the original data impact on the ResultSet.

A ResultSet containing  the READ_ONLY and SCROLL_INSENSITIVE properties

corresponds  to a record  set of the Snapshot type in ADO and DAO. 

When using  the ResultSet’s UPDATEABLE and SCROLL_SENSITIVE properties ,

the scope of function  of a ResultSet is  comparable with  a Dynaset type

Recordset from ADO and DAO.

Methods for Navigation in ResultSets
If a ResultSet is a SCROLL_INSENSITIVE or SCROLL_SENSITIVE type, it
supports a whole range of methods for navigation in the stock of data. The central
methods are:

 next() – navigation to the next data record.
 previous() – navigation to the previous data record.
 first() – navigation to the first data record.
 last() – navigation to the last data record.
 beforeFirst() – navigation to before the first data record.
 afterLast() – navigation to after the last data record.

All methods return a Boolean parameter which specifies whether the navigation
was successful.

To determine the current cursor position, the following test methods are provided
and all return a Boolean value:

 isBeforeFirst() – ResultSet is before the first data record.
 isAfterLast() – ResultSet is after the last data record.
 isFirst() – ResultSet is the first data record.
 isLast() – ResultSet is the last data record.

Chapter 10   Database Access  221



Modifying Data Records
If a ResultSet has been created with the ResultSetConcurrency =
UPDATEABLE value, then its content can be edited. This only applies for as long as
the SQL command allows the data to be re-written to the database (depends on
principle). This is not, for example, possible with complex SQL commands with
linked columns or accumulated values.

The ResultSet object provides Update methods for modifying values, which
are structured in the same way as the get methods for retrieving values. The
updateString method, for example, allows a string to be written.

After modification, the values must be transferred into the database using the
updateRow()method. The call must take place before the next navigation
command, otherwise the values will be lost.

If an error is made during the modifications, this can be undone using the
cancelRowUpdates()method. This call is only available provided that the data
has not be re-written into the database using updateRow().

222   OpenOffice.org  Basic  Programmer's  Guide



11 Dialogs
You can add custom dialog windows and forms to StarOffice documents. These in
turn can be linked to StarOffice Basic macros to considerably extend the usage
range of StarOffice Basic. Dialogs can, for example, display database information
or guide users through a step-by-step  process of creating a new document in the
form of an AutoPilot.

Working With Dialogs
StarOffice Basic dialogs consist of a dialog window that can contain text fields, list
boxes, radio buttons, and other control elements.

Creating Dialogs
You can create and structure dialogs using the StarOffice dialog editor that you
can use in the same way as a StarOffice Draw:

223

CHAPTER  11



Essentially, you drag the control elements that you want from the design pallet
(right) into the dialog area where you can define their position and size.

224   OpenOffice.org  Basic  Programmer's  Guide



The example shows a dialog that contains a label and a list box.

You can open a dialog with the following code:

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")

Dlg = CreateUnoDialog(DialogLibraries.Standard.DlgDef)

Dlg.Execute()

Dlg.dispose()

CreateUnoDialog creates an object called Dlg that references the associated
dialog. Before you can create the dialog, you must ensure that the library it uses

(in this example, the Standard library) is loaded. If not, the LoadLibrary
method performs this task.

Once the Dlg dialog object has been initialized, you can use the Execute method
to display the dialog. Dialogs such as this one are described as modal because they

Chapter 11   Dialogs   225



do not permit any other program action until they are closed. While this dialog is
open, the program remains in the Execute call.

The dispose method at the end of the code approves the resources used by the
dialog once the program ends.

Closing Dialogs

Closing With OK or Cancel

If a dialog contains an OK or a Cancel button, the dialog is automatically closed
when you press one of these buttons. More information about working with these
buttons are discussed in this Dialog Control Elements in Detail section of this
chapter.

If you close a dialog by clicking the OK button, the Execute-method returns a
return value of 1, otherwise a value of 0 is returned.

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")

Dlg = CreateUnoDialog(DialogLibraries.Standard.MyDialog)

Select Case Dlg.Execute() 

Case 1

MsgBox "Ok pressed"

Case 0 

MsgBox "Cancel pressed"

End Select

Closing With the Close Button in the Title Bar

If you want, you can close a dialog by clicking the close button on the title bar of
the dialog window. In this instance, the Execute method of the dialog returns
the value 0, the same as when you press the Cancel button.

Closing With an Explicit Program Call

You can also close an open dialog window with the endExecute method:

Dlg.endExecute()

226   OpenOffice.org  Basic  Programmer's  Guide



Access to Individual Control Elements
A dialog can contain any number of control elements. You can access these
elements through the getControl method that returns the name of the control
element.

Dim Ctl As Object

Ctl = Dlg.getControl("MyButton")

Ctl.Label = "New Label"

This code determines the object for the MyButton control element and then
initializes the Ctl object variable with a reference to the element. Finally the code
sets the Label property of the control element to the New Label value.

Note that StarOffice Basic distinguishes between uppercase and lowercase
characters for the names of control elements.

Working With the Model of Dialogs and Control
Elements
The division between visible program elements (View) and the data or documents
behind them (Model) occurs at many places in StarOffice API. In addition to the
methods and properties of control elements, both dialog and control element
objects have a subordinate Model object. This object allows you to directly access
the content of a dialog or control element.

In dialogs, the distinction between data and depiction is not always as clear as in
other API areas of StarOffice. Elements of the API are available through both the
View and the Model.

The Model property provides program-controlled access to the model of dialog
and control element objects.

Dim cmdNext As Object

cmdNext = Dlg.getControl("cmdNext")

cmdNext.Model.Enabled = False

Chapter 11   Dialogs   227



This example deactivates the cmdNtext button in the Dlg dialog with the aid of
the model object from cmdNtext.

Properties
Name and Title
Every control element has its own name that can be queried using the following
model property:

 Model.Name (String) – control element name

You can specify the title that appears in the title bar of a dialog with the following
model property:

 Model.Title (String) – dialog title (only applies to dialogs).

Position and Size
You can query the size and position of a control element using the following
properties of the model object:

 Model.Height (long) – height of control element (in ma units)

 Model.Width (long) – width of control element (in ma units)

 Model.PositionX (long) – X-position of control element, measured from
the left inner edge of the dialog (in ma units)

 Model.PositionY (long) – Y-position of control element, measured from
top inner edge of the dialog (in ma units)

To ensure platform independence for the appearance of dialogs, StarOffice uses
the Map AppFont (ma) internal unit to specify the position and size within dialogs.
A ma unit is defined as being one eighth of the average height of a character from
the system font defined in the operating system and one quarter of its width. By
using ma units, StarOffice ensures that a dialog looks the same on different
systems under different system settings.

If you want to change the size or position of control elements for runtime,
determine the total size of the dialog and adjust the values for the control elements
to the corresponding part ratios.

228   OpenOffice.org  Basic  Programmer's  Guide



The Map AppFont  (ma) replaces the Twips  unit  to achieve better  platform
independence.

Focus and Tabulator Sequence
You can navigate through the control elements in any dialog by pressing the Tab
key. The following properties are available in this context in the control elements
model:

 Model.Enabled (Boolean) – activates the control element

 Model.Tabstop (Boolean) – allows the control element to be reached through
the Tab key

 Model.TabIndex (Long) – position of control element in the order of
activation

Finally, the control element provides a getFocus method that ensures that the
underlying control element receives the focus:

 getFocus – control element receives the focus (only for dialogs)

Multi-Page Dialogs
A dialog in StarOffice can have more than one tab page. The Step property of a
dialog defines the current tab page of the dialog whereas the Step property for a
control element specifies the tab page where the control element is to be displayed.

The Step-value of 0 is a special case. If you set this value to zero in a dialog, all of
the control elements are visible regardless of their Step value. Similarly, if you set
this value to zero for a  control element, the element is displayed on all of the tab
pages in a dialog.

Chapter 11   Dialogs   229



In the preceding example, you can also assign the Step value of 0 to the dividing
line as well as the Cancel, Prev, Next, and Done buttons to display these
elements on all pages. You can also assign the elements to an individual tab page
(for example page 1).

The following program code shows how the Step value in event handlers of the
Next and Prev buttons can be increased or reduced and changes the status of the
buttons.

Sub cmdNext_Initiated

Dim cmdNext As Object

Dim cmdPrev As Object

cmdPrev = Dlg.getControl("cmdPrev")

cmdNext = Dlg.getControl("cmdNext")

cmdPrev.Model.Enabled = Not cmdPrev.Model.Enabled

cmdNext.Model.Enabled = False

Dlg.Model.Step = Dlg.Model.Step + 1

End Sub

230   OpenOffice.org  Basic  Programmer's  Guide



Sub cmdPrev_Initiated

Dim cmdNext As Object

Dim cmdPrev As Object

cmdPrev = Dlg.getControl("cmdPrev")

cmdNext = Dlg.getControl("cmdNext")

cmdPrev.Model.Enabled = False

cmdNext.Model.Enabled = True

Dlg.Model.Step = Dlg.Model.Step - 1

End Sub

A global Dlg variable that references an open dialog must be included to make
this example  possible. The dialog then changes its appearance as follows:

Page 1: 

Page 2:

Chapter 11   Dialogs   231



Events
StarOffice dialogs and forms are based on an event-oriented programming model
where you can assign event handlers to the control elements. An event handler runs
a predefined procedure when a  particular action occurs, even when the action is
another event. You can also edit documents or open databases with event
handling as well as access other control elements.

StarOffice control elements recognize different types of events that can be
triggered in different situations. These event types can be divided into four
groups:

 Mouse control: Events that correspond to mouse actions (for example, simple
mouse movements or a click on a particular screen location)

 Keyboard control: Events that are triggered by keyboard strokes

 Focus modification: Events that StarOffice perform when control elements are
activated or deactivated

 Control element-specific events: Events that only occur in relation to certain
control elements

When you work with events, ensure that you create the associated dialog in the
StarOffice development environment and that it contains the required control
elements or documents (if you the events apply to a form).

232   OpenOffice.org  Basic  Programmer's  Guide



The preceding figure shows the StarOffice Basic development environment with a
dialog window that contains two list boxes. You can move the data from one list
to the other using the buttons between the two list boxes.

If you want to display the layout on screen, then you should create the associated
StarOffice Basic procedures so that they can be called up by the event handlers.
Even though you can use these procedures in any module, it is best to limit their
use to two modules. To make your code easier to read, you should assign
meaningful names to these procedures. Jumping directly to a general program
procedure from a macro can result in unclear code. Instead, to simplify code
maintenance and troubleshooting, you should create another procedure to serve
as an entry point for event handling - even if it only executes a single call to the
target procedure.

Chapter 11   Dialogs   233



The code in the following example moves an entry from the left to the right list
box of a dialog.

Sub cmdSelect_Initiated

Dim objList As Object

lstEntries = Dlg.getControl("lstEntries")

lstSelection = Dlg.getControl("lstSelection")

If lstEntries.SelectedItem > 0 Then

lstSelection.AddItem(lstEntries.SelectedItem, 0)

lstEntries.removeItems(lstEntries.SelectedItemPos, 1)

Else

Beep

End If

End Sub

If this procedure was created in StarOffice Basic, you can assign it to an event
required using the property window of the dialog editor.

The assignment dialog lists all of the StarOffice Basic procedures. To assign a
procedure to an event, select the procedure, and then click Assign.

234   OpenOffice.org  Basic  Programmer's  Guide



Parameters
The occurrence of a particular event is not always enough for an appropriate
response. Additional information may be required. For example, to process a
mouse click, you may need the screen position where the mouse button was
pressed.

In StarOffice Basic, you can use object parameters to provide more information
about an event to a procedure, for example:

Sub ProcessEvent(Event As Object)

End Sub

The accuracy with which the Event object is structured and its properties depend
on the type of event that the procedure call triggers. The following sections
describe event types in detail.

Regardless of the type of event, all objects provide access to the relevant control
element and its model. The control element can be reached using

Event.Source 

and its model using

Event.Source.Model

You can use these properties to trigger an event within an event handler.

Mouse Events
StarOffice Basic recognizes the following mouse events:

 Mouse moved – user moves mouse

 Mouse moved while key pressed – user drags mouse while holding down
a key

 Mouse button pressed – user presses a mouse button

 Mouse button released – user releases a mouse button

 Mouse outside – user moves mouse outside of the current window

Chapter 11   Dialogs   235



The structure of the associated event objects is defined in the
com.sun.star.awt.MouseEvent structure which provides the following
information:

 Buttons (short) – button pressed (one or more constants in accordance
with com.sun.star.awt.MouseButton).

 X (long) – X-coordinate of mouse, measured in pixels from the top left
corner of the control element

 Y (long) – Y-coordinate of mouse, measured in pixels from the top left
corner of the control element

 ClickCount (long) – number of clicks associated with the mouse event (if
StarOffice can respond fast enough, ClickCount is also 1 for a double-click
because only an individual event is initiated).

The constants defined in com.sun.star.awt.MouseButton for the mouse
buttons are:

 LEFT – left mouse button

 RIGHT – right mouse button

 MIDDLE – middle mouse button

The following example outputs the mouse position as well as the mouse button
that was pressed: 

Sub MouseUp(Event As Object)

Dim Msg As String

Msg = "Keys: "

If Event.Buttons AND com.sun.star.awt.MouseButton.LEFT Then

Msg = Msg & "LEFT "

End If

If Event.Buttons AND com.sun.star.awt.MouseButton.RIGHT Then

Msg = Msg & "RIGHT "

End If

If Event.Buttons AND com.sun.star.awt.MouseButton.MIDDLE Then

Msg = Msg & "MIDDLE "

End If

Msg = Msg & Chr(13) & "Position: "

Msg = Msg & Event.X & "/" & Event.Y

MsgBox Msg

End Sub

236   OpenOffice.org  Basic  Programmer's  Guide



The VBA Click and Doubleclick events are not available in StarOffice Basic. Instead

use the StarOffice Basic  MouseUp event for the the click event and imitate the

Doubleclick event by changing  the application  logic.

Keyboard Events
The following keyboard events are available in StarOffice Basic:

 Key pressed – user presses a key

 Key released – user releases a key

Both events relate to logical key actions and not to physical actions. If the user
presses several keys to output a single character (for example, to add an accent to
a character), then StarOffice Basic only creates one event.

A single key action on a modification key, such as the Shift key or the Alt key does
not create an independent event.

Information about a pressed key is provided by the event object that StarOffice
Basic supplies to the procedure for event handling. It contains the following
properties:

 KeyCode (short) – code of the pressed key (default values in accordance
with com.sun.star.awt.Key)

 KeyChar (String) – character that is entered (taking the modification keys
into consideration)

The following example uses the KeyCode property to establish if the Enter key,
the Tab key, or one of the other control keys has been pressed. If one of these keys
has been pressed, the name of the key is returns, otherwise the character that was
typed is returned:

Sub KeyPressed(Event As Object)

Dim Msg As String

Select Case Event.KeyCode

Case com.sun.star.awt.Key.RETURN

Msg = "Return pressed"

Case com.sun.star.awt.Key.TAB

Msg = "Tab pressed"

Case com.sun.star.awt.Key.DELETE

Chapter 11   Dialogs   237



Msg = "Delete pressed"

Case com.sun.star.awt.Key.ESCAPE

Msg = "Escape pressed"

Case com.sun.star.awt.Key.DOWN

Msg = "Down pressed"

Case com.sun.star.awt.Key.UP

Msg = "Up pressed"

Case com.sun.star.awt.Key.LEFT

Msg = "Left pressed"

Case com.sun.star.awt.Key.RIGHT

Msg = "Right pressed"

Case Else

Msg = "Character " & Event.KeyChar & " entered"

End Select

MsgBox Msg

End Sub

Information about other keyboard constants can be found in the API Reference
under the com.sun.star.awt.Key group of constants.

Focus Events
Focus events indicate if a control element receives or loses focus. You can use these
events to, for example, determine if a user has finished processing a control
element so that you can update other elements of a dialog. The following focus
events are available:

 When receiving focus – element receives focus

 When losing focus – element loses focus

The Event objects for the focus events are structured as follows:

 FocusFlags (short) – cause of focus change (default value in accordance
with com.sun.star.awt.FocusChangeReason).

 NextFocus (Object) – object that receives focus (only for the When losing
focus event)

 Temporary (Boolean) – the focus is temporarily lost

238   OpenOffice.org  Basic  Programmer's  Guide



Control Element-Specific Events
In addition to the preceding events, which are supported by all control elements,
there are also some control element-specific events that are only defined for certain
control elements. The most important of these events are:

 When Item Changed – the value of a control element changes

 Item Status Changed – the status of a control element changes

 Text modified – the text of a control element changes

 When initiating – an action that can be performed when the control
element is triggered (for example, a button is pressed)

When you work with events, note that some events, such as the When initiating
event, can be initiated each time you click the mouse on some control elements (for
example, on radio buttons). No action is performed to check if the status of the
control element has actually changed. To  avoid such “blind events”, save the old
control element value in a global variable, and then check to see if the value has
changed when an event is executing.

The properties for the Item Status Changed event are:

 Selected (long) – currently selected entry

 Highlighted (long) – currently highlighted entry

 ItemId (long) – ID of entry

Dialog Control Elements in Detail
StarOffice Basic recognizes a range of control elements which can be divided into
the following groups:

Entry fields:

 Text fields

 Date fields

 Time fields

 Numerical fields

 Currency fields

 Fields adopting any format

Chapter 11   Dialogs   239



Buttons:

 Standard buttons

 Checkboxes

 Radio Buttons

Selection lists:

 List boxes

 Combo-boxes

Other control elements:

 Scrollbars ( horizontal and vertical)

 Fields of groups

 Progress bars

 Dividing lines (horizontal and vertical)

 Graphics

 File selection fields

The most important of these control elements are presented below.

Buttons
A button performs an action when you click it.

The simplest scenario is for the button to trigger a When Initiating event
when it is clicked by a user. You can also link another action to the button to open
a dialog using the PushButtonType property. When you click a button that has
this property set to the value of 0, the dialog remains unaffected. If you click a
button that has this property set to the value of 1, the dialog is closed, and the
Execute method of the dialog returns the value 1 (dialog sequence has been
ended correctly). If the PushButtonType has the value of 2, the dialog is closed
and the Execute method of the dialog returns the value 0 (dialog closed).

240   OpenOffice.org  Basic  Programmer's  Guide



The following are all of the properties that are available through the button model:

 Model.BackgroundColor (long) – color of background

 Model.DefaultButton (Boolean) – The button is used as the default
value and responds to the Enter key if it has no focus.

 Model.FontDescriptor (struct) – structure that specifies the details of
the font to be used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 Model.Label (String) – label that is displayed on the button

 Model.Printable (Boolean) – the control element can be printed

 Model.TextColor (Long) – text color of the control element

 Model.HelpText (String) – help text that is displayed when you move
the mouse cursor over the control element

 Model.HelpURL (String) – URL of the online help for the corresponding
control element

 PushButtonType (short) – action that is linked to the button (0: no action,
1: OK, 2: Cancel)

Option Buttons
These buttons are generally used in groups and allow you to select from one of
several options. When you select an option, all of the other options in the group
are deactivated. This ensures that at any one time, only one option button is set.

An option button control element provides two properties:

 State (Boolean) – activates the button

 Label (String) – label that is displayed on the button

You can also use the following properties from the model of the option buttons:

 Model.FontDescriptor (struct) – structure with details of the font to be
used (in accordance with com.sun.star.awt.FontDescriptor)

 Model.Label (String) - label that is displayed on the control element

 Model.Printable (Boolean) – control element can be printed

 Model.State (Short) – if this property is equal to 1, the option is activated,
otherwise it is deactivated

Chapter 11   Dialogs   241



 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – help text that is displayed when the mouse
cursor rests over the control element

 Model.HelpURL (String) – URL of online help for the corresponding
control element

To combine several option buttons in a group, you must position them one after
another in the activation sequence without any gaps (Model.TabIndex property,
described as Order in the dialog editor). If the activation sequence is interrupted
by another control element, then StarOffice automatically starts with a new control
element group that can be activated regardless of the first group of control
elements.

Unlike VBA, you cannot  insert  option  buttons  in a group  of control  elements  in
StarOffice Basic.  The grouping  of control  elements  in StarOffice Basic  is only  used
to ensure a visual  division  by drawing  a frame around  the control  elements.

Checkboxes
Checkboxes are used to record a Yes or No value and depending on the mode, they
can adopt two or three states. In addition to the Yes and No states, a check box can
have an in-between state if the corresponding Yes or No status has more than one
meaning or is unclear.

Checkboxes provide the following properties:

 State (Short) – state of the checkbox (0: no, 1: yes, 2: in-between state)

 Label (String) – label for the control element

 enableTriState (Boolean) – in addition to the activated and deactivated
states, you can also use the in-between state

The model object of a checkbox provides the following properties:

 Model.FontDescriptor (struct) – structure with details of the font used
(in accordance with com.sun.star.awt.FontDescriptor structure)

 Model.Label (String) – label for the control element

 Model.Printable (Boolean) – the control element can be printed

242   OpenOffice.org  Basic  Programmer's  Guide



 Model.State (Short) – state of the checkbox (0: no, 1: yes, 2: in-between
state)

 Model.Tabstop (Boolean) – the control element can be reached with the
Tab key

 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – help text that is displayed when you rest the
mouse cursor over the control element

 Model.HelpURL (String) – URL of online help for the corresponding
control element

Text Fields
Text fields allow users to type numbers and text. The
com.sun.star.awt.UnoControlEdit. service forms the basis for text fields.

A text field can contain one or more lines and can be edited or blocked for user
entries. Text fields can also be used as special currency and numerical fields as
well as screen fields for special tasks. As these control elements are based on the
UnoControlEdit Uno service, their program-controlled handling is similar.

Text fields provide the following properties:

 Text (String) – current text

 SelectedText (String) – currently highlighted text

 Selection (Struct) – read-only highlighting of details (structure in
accordance with com.sun.star.awt.Selection, with the Min and Max
properties to specify the start and end of the current highlighting)

 MaxTextLen (short) – maximum number of characters that you can type in
the field

 Editable (Boolean) – True activates the option for entering text, False
blocks the entry option (the property cannot be called up directly but only
through IsEditable)

 IsEditable (Boolean) – the content of the control element can be changed,
read-only.

Furthermore, the following properties are provided through the associated model
object: 

Chapter 11   Dialogs   243



 Model.Align (short) – orientation of text (0: left-aligned, 1: centered, 2:
right-aligned)

 Model.BackgroundColor (long) – color of the background of the control
element

 Model.Border (short) – type of border (0: no border, 1: 3D border, 2:
simple border)

 Model.EchoChar (String) – echo character for password fields

 Model.FontDescriptor (struct) – structure with details of font used (in
accordance with com.sun.star.awt.FontDescriptor structure)

 Model.HardLineBreaks (Boolean) – automatic line breaks are
permanently inserted in the control element text

 Model.HScroll (Boolean) – 

 Model.MaxTextLen (Short) – maximum length of text, where 0 corresponds
to no length limit

 Model.MultiLine (Boolean) – permits entry to spans several lines

 Model.Printable (Boolean) – the control element can be printed

 Model.ReadOnly (Boolean) – the content of the control element is read-
only

 Model.Tabstop (Boolean) – the control element can be reached with the
Tab key

 Model.Text (String) – text associate with the control element

 Model.TextColor (Long) – text color of control element

 Model.VScroll (Boolean) – the text has a vertical scrollbar

 Model.HelpText (String) – help text that is displayed when the mouse
cursor rests over the control element

 Model.HelpURL (String) – URL of online help for the corresponding
control element

List Boxes
List boxes (com.sun.star.awt.UnoControlListBox service) support the
following properties:

 ItemCount (Short) – number of elements, read-only

244   OpenOffice.org  Basic  Programmer's  Guide



 SelectedItem (String) – text of highlighted entry, read-only

 SelectedItems (Array Of Strings) – data field with highlighted
entries, read-only

 SelectedItemPos (Short) – number of the entry highlighted at present,
read-only

 SelectedItemsPos (Array of Short) – data field with the number of
highlighted entries (for lists which support multiple selection), read-only

 MultipleMode (Boolean) – True activates the option for multiple selection
of entries, False blocks multiple selections (the property cannot be called up
directly but only through IsMultipleMode)

 IsMultipleMode (Boolean) – permits multiple selection within lists, read-
only

List boxes provide the following methods:

 addItem (Item, Pos) – enters the string specified in the Item into the list at
the Pos position

 addItems (ItemArray, Pos) – enters the entries listed in the string’s
ItemArray data field into the list at the Pos position

 removeItems (Pos, Count) – removes Count entries as of the Pos
position

 selectItem (Item, SelectMode) – activates or deactivates highlighting
for the element specified in the string Item depending on the SelectMode
Boolean variable

 makeVisible (Pos) – scrolls through the list field so that the entry specified
with Pos is visible

The model object of the list boxes provides the following properties:

 Model.BackgroundColor (long) – background color of control element

 Model.Border (short) – type of border (0: no border, 1: 3D border, 2:
simple border)

 Model.FontDescriptor (struct) – structure with details of font used (in
accordance with com.sun.star.awt.FontDescriptor structure)

 Model.LineCount (Short) – number of lines in control element

 Model.MultiSelection (Boolean) – permits multiple selection of entries

Chapter 11   Dialogs   245



 Model.SelectedItems (Array of Strings) – list of highlighted entries

 Model.StringItemList (Array of Strings) – list of all entries

 Model.Printable (Boolean) – the control element can be printed

 Model.ReadOnly (Boolean) – the content of the control element is read-
only

 Model.Tabstop (Boolean) – the control element can be reached with the
Tab key.

 Model.TextColor (Long) – text color of control element

 Model.HelpText (String) – automatically displayed help text which is
displayed if the mouse cursor is above the control element

 Model.HelpURL (String) – URL of online help for the corresponding
control element

The VBA option  for  issuing  list  entries  with  a numerical  additional  value (
ItemData) does not  exist  in StarOffice Basic.  If you want to administer  a

numerical  value (for  example a database ID) in addition  to the natural  language
text, you  must  create an auxiliary  data field  that administers  in parallel  to the list
box.

246   OpenOffice.org  Basic  Programmer's  Guide



12 Forms
In many respects, the structure of StarOffice-forms corresponds to the dialogs
discussed in the previous chapter. There are, however, a few key differences:

 Dialogs appear in the form of one single dialog window, which is displayed
over the document and does not permit any actions other than dialog
processing until the dialog is ended. Forms, on the other hand, are displayed
directly in the document, just like drawing elements.

 A dialog editor is provided for creating dialogs, and this can be found in the
StarOffice Basic development environment. Forms are created using the Form
Functions Toolbar directly within the document.

 Whereas the dialog functions are available in all StarOffice documents, the full
scope of the form functions are only available in text and spreadsheets.

 The control elements of a form can be linked with an external database table.
This function is not available in dialogs.

 The control elements of dialogs and forms differ in several aspects.

Users who want to provide their forms with their own methods for event
handling, should refer to Chapter 11 (Dialogs). The mechanisms explained there
are identical to those for forms.

Working with Forms
StarOffice forms may contain text fields, list boxes, radio buttons, and a range of
other control elements, which are inserted directly in a text or spreadsheet. The
Form Functions Toolbar is used for editing forms.

247

CHAPTER  12



A StarOffice form may adopt one of two modes: the draft mode and the display
mode. In draft mode, the position of control elements can be changed and their
properties can be edited using a properties window.

The Form Functions Toolbar is also used to switch between modes.

Determining Object Forms
StarOffice positions the control elements of a form at drawing object level. The
actual object form can be accessed through the Forms list at drawing level. The
objects are accessed as follows in text documents:

Dim Doc As Object

Dim DrawPage As Object

Dim Form As Object

Doc = StarDesktop.CurrentComponent

DrawPage = Doc.DrawPage

Form = DrawPage.Forms.GetByIndex(0)

The GetByIndex method returns the form with the index number 0.

When working with spreadsheets, an intermediate stage is needed  the Sheets
list because the drawing levels are not located directly in the document but in the
individual sheets:

Dim Doc As Object

Dim Sheet As Object

Dim DrawPage As Object

Dim Form As Object

Doc = StarDesktop.CurrentComponent

Sheet = Doc.Sheets.GetByIndex(0)

DrawPage = Sheet.DrawPage

Form = DrawPage.Forms.GetByIndex(0)

As is already suggested by the GetByIndex method name, a document may
contain several forms. This is useful, for example, if the contents of different
databases are displayed within one document, or if a 1:n database relationship is
displayed within a form. The option of creating sub-forms is also provided for this
purpose.

248   OpenOffice.org  Basic  Programmer's  Guide



The Three Aspects of a Control Element Form
A control element of a form has three aspects:

 First, there is the Model of the control element. This is the key object for the
StarOffice Basic-programmer when working with control element forms.

 The counterpart to this is the View of the control element, which administers
the display information.

 Since control element forms within the documents are administered like a
special drawing element, there is also a Shape object which reflects the drawing
element-specific properties of the control element (in particular its position and
size).

Accessing the Model of Control Element Forms
The models of the control elements of a form are available through the
GetByName method of the Object form:

Dim Doc As Object

Dim Form As Object

Dim Ctl As Object

Doc = StarDesktop.CurrentComponent

Form = Doc.DrawPage.Forms.GetByIndex(0)

Ctl = Form.getByName("MyListBox")

The example determines the model of the MyListBox control element, which is
located in the first form of the text document currently open.

If you is not sure of the form of a control element, you can use the option for
searching through all forms for the control element required:

Dim Doc As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

Chapter  12   Forms  249



Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyListBox") Then

Ctl = Form.GetbyName("MyListBox")

Exit Function

End If

Next I

The example uses the HasByName method to check all forms of a text document to
determine whether they contain a control element model called MyListBox. If a
corresponding model is found, then a reference to this is saved in the Ctl variable
and the search is terminated.

Accessing the View of Control Element Forms
To access the view of a control element form, the associated model is first needed.
The view of the control element can then be determined with the assistance of the
model and using the document controller.

Dim Doc As Object

Dim DocCrl As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim CtlView As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

DocCrl = Doc.getCurrentControler()
Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyListBox") Then

Ctl = Form.GetbyName("MyListBox")

CtlView = DocCrl.GetControl(Ctl)
Exit Function

End If

Next I

250   OpenOffice.org  Basic  Programmer's  Guide



The code listed in the example is very similar to the code listed in the previous
example for determining a control element model. It uses not only the Doc
document object but also the DocCrl document controller object which makes
reference to the current document window. With the help of this controller object
and the model of the control element, it then uses the GetControl method to
determine the view (CtlView variable) of the control element form.

Accessing the Shape Object of Control Element
Forms
The method for accessing the shape objects of a control element also uses the
corresponding drawing level of the document. To determine a special control
element, all drawing elements of the drawing level must be searched through.

Dim Doc As Object

Dim Shape as Object

Dim I as integer

Doc = StarDesktop.CurrentComponent

For i = 0 to Doc.DrawPage.Count - 1

Shape = Doc.DrawPage(i)

If HasUnoInterfaces(Shape, _

"com.sun.star.drawing.XControlShape") Then

If Shape.Control.Name = "MyListBox" Then

Exit Function

End If

End If

Next

The example checks all drawing elements to determine whether they support the
com.sun.star.drawing.XControlShape interface needed for control
element forms. If this is the case, the Control.Name property then checks
whether the name of the control element is MyListBox. If this is true, the function
ends the search.

Chapter  12   Forms  251



Determining the Size and Position of Control Elements

As already mentioned, the size and position of control elements can be
determined using the associated shape object. The control element shape, like all
other shape objects, provides the Size and Position properties for this
purpose:

 Size (struct) – size of control element (com.sun.star.awt.Size data
structure).

 Position (struct) – position of control element (com.sun.star.awt.Point
data structure).

The following example shows how the position and size of a control element can
be set using the associated shape object:

Dim Shape As Object

Point.x = 1000

Point.y = 1000

Size.Width = 10000

Size.Height = 10000

Shape.Size = Size

Shape.Position = Point

The shape object of the control element must already be known if the code is to
function. If this is not the case, it must be determined using the preceding code.

Control Element Forms in Detail
The control elements available in forms are similar to those of dialogs. The
selection ranges from simple text fields through list and combo boxes to various
buttons.

Below, you will find a list of the most important properties for control element
forms. All properties form part of the associated model objects.

In addition to the standard control elements, a table control element is also available
for forms, which enables the complete incorporation of database tables. This is
described in the Database Forms section in chapter 11.

252   OpenOffice.org  Basic  Programmer's  Guide



Buttons
The model object of a form button provides the following properties:

 BackgroundColor (long) – background color.

 DefaultButton (Boolean) – the button serves as a default value. In this
case, it also responds to the entry button if it has no focus.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the
tabulator button.

 TabIndex (Long) – position of control element in activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be
saved in the button for program-controlled access.

 TargetURL (String) – target URL for buttons of the URL type.

 TargetFrame (String) – name of window (or frame) in which TargetURL
is to be opened when activating the button (for buttons of the URL type).

 Label (String) – button label.

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text which is displayed
if the mouse cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control
element.

 ButtonType (Enum) – action that is linked with the button (default value
from com.sun.star.form.FormButtonType).

Through the ButtonType property, you have the opportunity to define an action
that is automatically performed when the button is pressed. The associated
com.sun.star.form.FormButtonType group of constants provides the
following values:

 PUSH – standard button.

 SUBMIT – end of form entry (particularly relevant for HTML forms).

 RESET – resets all values within the form to their original values.

Chapter  12   Forms  253



 URL – call of the URL defined in TargetURL (is opened within the window
which was specified through TargetFrame).

The OK and Cancel button types provided in dialogs are not supported in forms.

Option Buttons
The following properties of an option button are available through its model
object:

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab
key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be
saved in the button for program-controlled access.

 Label (String) – inscription of button.

 Printable (Boolean) – the control element can be printed.

 State (Short) – if 1, the option is activated, otherwise it is deactivated.

 RefValue (String) – string for saving additional information (for example,
for administering data record IDs).

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed
if the mouse cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control
element.

The mechanism for grouping option buttons distinguishes between the control
elements for dialogs and forms. Whereas control elements appearing one after
another in dialogs are automatically combined to form a group, grouping in forms is
performed on the basis of names. To do this, all option buttons of a group must
contain the same name. StarOffice combines the grouped control elements into an
array so that the individual buttons of a StarOffice Basic program can be reached in
the same way as previously.

254   OpenOffice.org  Basic  Programmer's  Guide



The following example shows how the model of a control element group can be
determined.

Dim Doc As Object

Dim Forms As Object

Dim Form As Object

Dim Ctl As Object

Dim I as Integer

Doc = StarDesktop.CurrentComponent

Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1

Form = Forms.GetbyIndex(I)

If Form.HasByName("MyOptions") Then

Ctl = Form. GetGroupbyName("MyOptions")
Exit Function

End If

Next I

The code corresponds to the previous example for determining a simple control
element model. It searches through all forms in the current text document in a
loop and uses the HasByName method to check whether the corresponding form
contains an element with the MyOptions name it is searching for. If this is the
case, then the model array is accessed using the GetGroupByName method (rather
than the GetByName method to determine simple models).

Checkboxes
The model object of a checkbox form provides the following properties: 

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab
key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information, which can be
saved in the button for program-controlled access.

Chapter  12   Forms  255



 Label (String) – button label.

 Printable (Boolean) – the control element can be printed.

 State (Short) – if 1, the option is activated, otherwise it is deactivated.

 RefValue (String) – string for saving additional information (for example,
for administrating data record IDs).

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed
if the mouse cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control
element.

Text Fields
The model objects of text field forms offer the following properties:

 Align (short) – orientation of text (0: left-aligned, 1: centered, 2: right-
aligned).

 BackgroundColor (long) – background color of control element.

 Border (short) – type of border (0: no border, 1: 3D border, 2: simple
border).

 EchoChar (String) – echo character for password field.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 HardLineBreaks (Boolean) – the automatic line breaks are permanently
inserted in the text of the control element.

 HScroll (Boolean) – the text has a horizontal scrollbar.

 MaxTextLen (Short) – maximum length of text; if 0 is specified, there are
no limits.

 MultiLine (Boolean) – permits multi-line entries.

 Printable (Boolean) – the control element can be printed.

 ReadOnly (Boolean) – the content of the control element is read-only.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab
key.

256   OpenOffice.org  Basic  Programmer's  Guide



 TabIndex (Long) – position of the control element in the activation
sequence.

 FontName (String) – name of font type.

 FontHeight (Single) – height of character in points (pt).

 Text (String) – text of control element.

 TextColor (Long) – text color of control element.

 VScroll (Boolean) – the text has a vertical scrollbar.

 HelpText (String) – automatically displayed help text, which is displayed
if the mouse cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control
element.

List Boxes
The model object of the list box forms provides the following properties:

 BackgroundColor (long) – background color of control element.

 Border (short) – type of border (0: no border, 1: 3D frame, 2: simple
frame).

 FontDescriptor (struct) – structure with details of font to be used (in
accordance with com.sun.star.awt.FontDescriptor structure).

 LineCount (Short) – number of lines of control element.

 MultiSelection (Boolean) – permits multiple selection of entries.

 SelectedItems (Array of Strings) – list of highlighted entries.

 StringItemList (Array of Strings) – list of all entries.

 ValueItemList (Array of Variant) – list containing additional
information for each entry (for example, for administrating data record IDs).

 Printable (Boolean) – the control element can be printed.

 ReadOnly (Boolean) – the content of the control element is read-only.

 Enabled (Boolean) – the control element can be activated.

 Tabstop (Boolean) – the control element can be reached through the tab
key.

 TabIndex (Long) – position of control element in the activation sequence.

 FontName (String) – name of font type.

Chapter  12   Forms  257



 FontHeight (Single) – height of character in points (pt).

 Tag (String) – string containing additional information which can be saved
in the button for program-controlled access.

 TextColor (Long) – text color of control element.

 HelpText (String) – automatically displayed help text, which is displayed
if the mouse cursor is above the control element.

 HelpURL (String) – URL of online help for the corresponding control
element.

Through  their  ValueItemList property,  list  box forms  provide  a counterpart  to

the VBA property,  ItemData, through  which  you  can administer  additional

information  for  individual  list  entries.

Furthermore, the following methods are provided though the view object of the
list box:

 addItem (Item, Pos) – inserts the string specified in the Item at the Pos
position in the list.

 addItems (ItemArray, Pos) – inserts the entries listed in the string’s
ItemArray data field in the list at the Pos position

 removeItems (Pos, Count) – removes Count entries as of the Pos
position.

 selectItem (Item, SelectMode) – activates or deactivates the
highlighting for the element specified in the string Item depending on the
SelectMode variable.

 makeVisible (Pos) – scrolls through the list field so that the entry specified
by Pos is visible.

Database Forms
StarOffice forms can be directly linked to a database. The forms created in this
way provide all the functions of a full database front end without requiring
independent programming work.

The user has the option of paging through and searching the selected tables and
queries, as well as changing data records and inserting new data records.

258   OpenOffice.org  Basic  Programmer's  Guide



StarOffice automatically ensures that the relevant data is retrieved from the
database, and that any changes made are written back to the database.

A database form basically corresponds to a standard StarOffice form. In addition
to the standard properties, the following database-specific properties must also be
set in the form:

 DataSourceName (String) – name of data source (refer to Chapter 10,
Database Access; Database access; the data source must be globally created in
StarOffice).

 Command (String) – name of table, query, or the SQL select command to
which a link is to be made.

 CommandType (Const) - specifies whether the Command is a table, a query
or a SQL command (value from com.sun.star.sdb.CommandType
enumeration).

The com.sun.star.sdb.CommandType enumeration covers the following
values:

 TABLE – Table

 QUERY - Query

 COMMAND – SQL command

The database fields are assigned to the individual control elements through this
property:

 DataField (String) – name of linked database field.

Tables
Another control element is provided for work with databases: the table control
element. This represents the content of a complete database table or query. In the
simplest scenario, a table control element is linked to a database using the
autopilot form, which links all columns with the relevant database fields in
accordance with the user specifications. Because the associated API is relatively
complex, we shall not provide a complete description of the API at this point.

Chapter  12   Forms  259



260   OpenOffice.org  Basic  Programmer's  Guide



13 Appendix

VBA Migrations Tips
List of words (Word)   106
List of sentences (Word)   106
List of characters (Word)   106
Font object (Excel, Word)   108
List of borders (Word)   108
Shading object (Word)   108
ParagraphFormat object (Word)
108
Range.MoveStart method
(Word)   114
Range.MoveEnd method (Word)
114
Range.InsertBefore method
(Word)   114
Range.InsertAfter method
(Word)   114
Find object (Word)   122
Replacement object (Word)   122
Tables.Add method (Word)   126
Frames.Add method (Word)
132
Fields.Add method (Word)   135

List of columns (Excel)   145
List of rows (Excel)   145
Range.Insert method (Excel)
151
Range.Delete method (Excel)
151
Range.Copy method (Excel)   151
Interior object (Excel)   152
PageSetup object (Excel, Word)
156
Worksheet.ChartObjects (Excel)
198
ADO Library   211
Recordset object (DAO, ADO)
219
Snapshot object (ADO, DAO)
221
Dynaset object (ADO, DAO)
221
Dialogs   223
Twips   229

261



StarOffice 5.x Migration Tips
Documents.Open method   92
Document object   95
Border object   109
Paragraph object   109
Font object   109
SearchSettings object   122
List of tables   127
DeleteUserField method   135
InsertField method   135
SetCurField method   135
Application.OpenTableConnection method   219
Application.DataNextRecord method   219

262   OpenOffice.org  Basic  Programmer's  Guide



Index

A
AdjustBlue  190
AdjustContrast  190
AdjustGreen  190
AdjustLuminance  190
AdjustRed  190
afterLast  221
Alignment  200
AllowAnimations  195
AnchorType  125
AnchorTypes  125
Annotations  

as field in text documents  138
ANSI  21
API Reference  82
Area  201
Area Diagrams  208
ArrangeOrder  205
arrays  28
Arrays  

checking  56
dynamic size changes  30
multi-dimensional  30

simple  28
Specified Value for Start Index  29

ASCII  20
AsTemplate  94
Author  138
AutoMax  204
AutoMin  204
AutoOrigin  204
AutoStepHelp  204
AutoStepMain  204
Axes  

of diagrams  203

B
BackColor  127, 129, 132, 156
BackGraphicFilter  156
BackGraphicLocation  156
BackGraphicURL  156
BackTransparent  156
Bar Diagrams  209
Beep  75
beforeFirst  221
Bitmaps  176
Bookmark  

263



com.sun.star.Text  139
in text documents  139

Boolean values  
converting  55

Boolean variables  
comparing  36
declaring  27
linking  35

BorderBottom  170
BorderLeft  170
BorderRight  170
BorderTop  170
BottomBorder  158
BottomBorderDistance  158
BottomMargin  127, 132, 157
Buttons  

of dialogues  240
of forms  253

ByRef  46
ByVal  46

C
cancelRowUpdates  222
CBool  55
CDate  55
CDbl  55
Cell Properties  152
Cell Ranges  165
cell template  100
CellAddress  

com.sun.star.table  151
CellBackColor  152
CellContentType  

com.sun.star.table  148
CellFlags  

com.sun.star.sheet  167
CellProperties  

com.sun.star.table  152
CellRangeAddress  

com.sun.star.table  149
Cells  146
CenterHorizontally  164
CenterVertically  164
Chapter name  

as field in text documents  139
Chapter number  

as field in text documents  139
ChapterFormat  139
character element templates  100
Character Properties  109
character templates  100
CharacterProperties  

com.sun.star.style  109
CharacterSet  94, 97
CharBackColor  110
CharColor  109
CharFontName  109
CharHeight  109
CharKeepTogether  110
CharStyleName  110
CharUnderline  109
CharWeight  109
Checkboxes  

of dialogues  242
of forms  255

CInt  54
CircleEndAngle  184
CircleKind  184
Circles  184
CircleStartAngle  184

264   OpenOffice.org  Basic  Programmer's  Guide



CLng  54
Close  71
Code Pages  21
collapseToEnd  117
collapseToStart  117
Collate  98
Color Gradient  174
Columns  

in spreadsheets  143
Command  215
Comments  16
Comparison Operators  36
Constants  35
Content  138
Control Codes  119
Conversion Functions  53
ConvertFromUrl  91
ConvertToUrl  91
CopyCount  98
copyRange  150
CornerRadius  184
createTextCursor  115
CreateUnoDialog  225
CSng  55
CStr  54
Currency  24
Current page  

as field in text documents  137
CustomShow  196

D
DatabaseContext  

com.sun.star.sdb  213
Date  28, 138
Date  

current system date  65
Date and time details  

as field in text documents  138
checking  56
comparing  36
converting  55
declaring  28
editing  62
formatting in spreadsheets  154
linking  35
System date and time  65

DateTimeValue  139
Day  63
DBG_methods  82
DBG_properties  81
DBG_supportetInterfaces  82
Deep  209
Defining printer paper tray  157
Desktop  

com.sun.star.frame  89
Dim  19
Dim3D  207
Dir  65
Direct formatting  108, 112
Displaying Messages  73
DisplayLabels  204
dispose  226
Do...Loop  40
Documents  

creating  94
exporting  95
importing  92
opening  92
printing  98
saving  95

Index   265



Double  23
DrawPages  169

E
Editing directories  67
Editing files  65
Editing text files  70
Ellipses  184
EllipseShape  

com.sun.star.drawing  184
end  195
endExecute  226
Environ  76
Eof  71
Error Handling  48
Events  

for dialogue and forms  232
Execute  225

return values  226
Exit Function  44
Exit Sub  44
Exponential Writing Style  26

F
file:///  90
FileCopy  68
FileDateTime  70
FileLen  70
FileName  98
Fill Properties  172
FillBitmapURL  177
FillColor  173
FillTransparence  177
FilterName  94, 97
FilterOptions  94, 97

first  221
FirstPage  196
Floor  201
FooterBackColor  161
FooterBackGraphicFilter  161
FooterBackGraphicLocation  161
FooterBackGraphicURL  161
FooterBackTransparent  161
FooterBodyDistance  160
FooterBottomBorder  161
FooterBottomBorderDistance  161
FooterHeight  160
FooterIsDynamicHeight  160
FooterIsOn  160
FooterIsShared  161
FooterLeftBorder  160
FooterLeftBorderDistance  161
FooterLeftMargin  160
FooterRightBorder  160
FooterRightBorderDistance  161
FooterRightMargin  160
Footers  159
FooterShadowFormat  161
FooterText  163
FooterTextLeft  163
FooterTextRight  163
FooterTopBorder  160
FooterTopBorderDistance  161
For...Next  39
Format  61
frame templates  100
Function  43
Functions  43

266   OpenOffice.org  Basic  Programmer's  Guide



G
Gamma  190
GapWidth  205
GeneralFunction  

com.sun.star.sheet  166
GetAttr  68
getColumns  129
getControl  227
getCurrentControler  250
getElementNames  84
getPropertyState  112
getRows  128
getTextTables  127
Global  33
goLeft  115
goRight  115
gotoEnd  115
gotoEndOfParagraph  116
gotoEndOfSentence  116
gotoEndOfWord  116
gotoNextParagraph  116
gotoNextSentence  116
gotoNextWord  116
gotoPreviousParagraph  116
gotoPreviousSentence  116
gotoPreviousWord  116
gotoRange  116
gotoStart  115
gotoStartOfParagraph  116
gotoStartOfSentence  116
gotoStartOfWord  116
Gradient  

com.sun.star.awt  174
GraphicColorMode  190
Graphics  189

GraphicURL  190

H
hasByName  84
HasLegend  199
hasLocation  96
HasMainTitle  199
hasMoreElements  87
HasSecondaryXAxis  203
HasSecondaryXAxisDescription  204
HasSubTitle  199
HasUnoInterfaces  251
HasXAxis  203
HasXAxisDescription  203
HasXAxisGrid  203
HasXAxisHelpGrid  203
HasXAxisTitle  203
Hatch  

com.sun.star.drawing  175
Hatches  175
HeaderBackColor  160
HeaderBackGraphicFilter  160
HeaderBackGraphicLocation  160
HeaderBackGraphicURL  160
HeaderBackTransparent  160
HeaderBodyDistance  159
HeaderBottomBorder  159
HeaderBottomBorderDistance  159
HeaderFooterContent  

com.sun.star.sheet  162
HeaderHeight  159
HeaderIsDynamicHeight  159
HeaderIsOn  159
HeaderIsShared  160
HeaderLeftBorder  159

Index   267



HeaderLeftBorderDistance  159
HeaderLeftMargin  159
HeaderRightBorder  159
HeaderRightBorderDistance  159
HeaderRightMargin  159
Headers  159
HeaderShadowFormat  160
HeaderText  163
HeaderTextLeft  163
HeaderTextRight  163
HeaderTopBorder  159
HeaderTopBorderDistance  159
Height  129, 133, 144, 157, 171
HelpMarks  205
Hexadecimal Values  26
HoriJustify  153
HoriOrient  133
Hour  63

I
If...Then...Else  36
Imitated properties  79
Indirect formatting  108, 112
Info  214
initialize  126
Input Box  75
InputBox  75
insertByIndex  86
insertByName  85
insertCell  148
insertTextContent  125f.
InStr  59
Integer  22
Interfaces  80
isAfterLast  221

IsAlwaysOnTop  196
IsArray  56
IsAutoHeight  129
IsAutomatic  196
isBeforeFirst  221
IsCellBackgroundTransparent  152
isCollapsed  117
IsDate  56, 138
IsEndless  196
isEndOfParagraph  116
isEndOfSentence  116
isEndOfWord  116
isFirst  221
IsFixed  138
IsFullScreen  196
IsLandscape  157
isLast  221
isModified  96
IsMouseVisible  196
IsNumeric  56
IsPasswordRequired  214
isReadonly  96
IsReadOnly  214
IsStartOfNewPage  144
isStartOfParagraph  116
isStartOfSentence  116
isStartOfWord  116
IsTextWrapped  153
IsVisible  142, 144

J
JDBC  211
JumpMark  94

268   OpenOffice.org  Basic  Programmer's  Guide



K
Key  

of diagrams  199
Kill  68

L
last  221
layers  169
Left  58
LeftBorder  157
LeftBorderDistance  158
LeftMargin  127, 133, 157
LeftPageFooterContent  162
LeftPageHeaderContent  161
Legend  199
Len  59
Level  139
line break  119
Line break  

in program code  16
in strings  20

Line Diagrams  208
LineColor  178
LineJoint  179
Lines  186, 208
LineStyle  178
LineStyle  

com.sun.star.drawing  178
LineTransparence  179
LineWidth  179
List boxes  

of dialogues  244
of forms  257

loadComponentFromURL  89
LoadLibrary  225

Logarithmic  204
Logical Operators  35
Long  23
Loops  39

M
Map AppFont  228
Markers  17
Marks  204
Mathematical Operators  35
Max  204
Methods  80
Mid  59f.
Min  204
Minute  63
MkDir  67
Modules  80
Month  63
moveRange  150
MsgBox  73

N
Name  68, 99, 214f.
next  221
nextElement  87
Now  65
Number  171
Number of characters  

as field in text documents  137
Number of words  

as field in text documents  137
NumberFormat  139, 154, 205
NumberFormatsSupplier  214
numbering templates  100
NumberingType  137

Index   269



NumberOfLines  209
Numbers  

checking  56
comparing  36
converting  54
declaring  22
formatting  61
linking  35

O
Octal Values  27
ODBC  211
Offset  137
On Error  48
Open ... For  70
Operators  35

comparable  36
logical  35
mathematical  35
mathematical operators  35

OptimalHeight  144
OptimalWidth  144
Option Buttons  

of dialogues  241
of forms  254

Optional Parameters  46
Orientation  153, 171
Origin  204
Overlap  205
Overwrite  97

P
Page Background  156
Page Format  156
Page margin  157

Page Margin  157
Page numbers  

as field in text documents  137
Page Properties  155
Page shadow  157
page templates  100
Pages  98
PageStyle  142
PaperFormat  99
PaperOrientation  99
PaperSize  99
ParaAdjust  110
ParaBackColor  110
ParaBottomMargin  110
Paragraph  

com.sun.star.text  104
paragraph break  119
Paragraph Portions  104
Paragraph Properties  110
paragraph templates  100
ParagraphProperties  

com.sun.star.style  110
Paragraphs  104
ParaLeftMargin  110
ParaLineSpacing  110
ParamArray  47
ParaRightMargin  110
ParaStyleName  110
ParaTabStops  110
ParaTopMargin  110
Passing Parameters  45
Password  94, 97, 214
Pause  196
Percent  207
Pie Diagrams  209

270   OpenOffice.org  Basic  Programmer's  Guide



Polypolygon Shapes  187
PolyPolygonShape  

com.sun.star.drawing  187
presentation templates  100
PresentationDocument  

com.sun.star.presentation  195
previous  221
Print  70
PrintAnnotations  164
PrintCharts  164
PrintDownFirst  164
PrintDrawing  164
PrinterPaperTray  157
PrintFormulas  164
PrintGrid  164
PrintHeaders  164
PrintObjects  164
PrintZeroValues  164
Private  34
Procedures  43
Properties  79
PropertyState  

com.sun.star.beans  112
protected space  119
Public  33

Q
Queries  215

R
ReadOnly  94
Rectangle Shapes  184
RectangleShape  

com.sun.star.drawing  184
Recursion  47

Regular expressions  120, 124
rehearseTimings  195
removeByIndex  86
removeByName  85
removeRange  150
removeTextContent  125
RepeatHeadline  128
Replace  

in text documents  123
replaceByName  85
ResultSetConcurrency  220
ResultSetType  220
Resume  49
Right  58
RightBorder  158
RightBorderDistance  158
RightMargin  127, 133, 157
RightPageFooterContent  162
RightPageHeaderContent  161
RmDir  67
RotateAngle  153, 193
Rotating  

of drawing elements  193
Rows  

in spreadheets  143

S
Scope  32
SDBC  211
Search  

in text documents  120
SearchBackwards  120
SearchCaseSensitive  120
SearchDescriptor  

com.sun.star.util  120

Index   271



SearchRegularExpression  120
SearchSimilarity  121
SearchSimilarityAdd  121
SearchSimilarityExchange  121
SearchSimilarityRelax  121
SearchSimilarityRemove  121
SearchStyles  120
SearchWords  120
Second  63
SecondaryXAxis  204
Select...Case  37
Services  80
Set of characters  20

ANSI  21
ASCII  20
defining for documents  94, 97
Unicode  21

SetAttr  69
Shadow  182
Shadow Properties  182
ShadowColor  182
ShadowFormat  152, 158
ShadowTransparence  182
ShadowXDistance  182
ShadowYDistance  182
ShearAngle  193
Shearing  

of drawing elements  193
Sheets  142
Shell  75
Similarity Search  121
Single  23
Single Color Fills  173
Sort  98
SplineOrder  208

SplineResolution  208
SplineType  208
SpreadsheetDocument  

com.sun.star.sheet  141
SQL  212
Stacked  207
StackedBarsConnected  209
StarDesktop  89
start  195
Starting programs (external)  75
StartWithNavigator  196
StepHelp  204
StepMain  204
store  95
storeAsURL  97
String  21, 200
Strings  

comparing  36
converting  54
declaring  20
editing  58
linking  35

StyleFamilies  100
StyleFamily  

com.sun.star.style  100
Sub  45
Sub-title  

of diagrams  199
Subtitle  199
supportsService  81
SuppressVersionColumns  214
syllabification  119
SymbolBitmapURL  208
SymbolSize  208
SymbolType  208

272   OpenOffice.org  Basic  Programmer's  Guide



T
TableColumns  

com.sun.star.table  143
TableFilter  214
TableRows  

com.sun.star.table  143
TableTypeFilter  214
Templates  100
Text fields  

of dialogues  243
of forms  256

Text Fields  135
Text Frames  132
TextAutoGrowHeight  180
TextAutoGrowWidth  181
TextBreak  205
TextCanOverlap  205
TextContent  

com.sun.star.text  125
TextCursor  115
TextField  

com.sun.star.text  135
TextFrame  

com.sun.star.text  132
TextHorizontalAdjust  181
TextLeftDistance  181
TextLowerDistance  181
Textproperty  

of drawing objects  180
TextRightDistance  181
TextRotation  200, 204
TextTable  

com.sun.star.text  104, 126
TextUpperDistance  181
TextVerticalAdjust  181

TextWrap  125
Time  65
Title  199
Title  

of diagrams  199
TopBorder  158
TopBorderDistance  158
TopMargin  128, 133, 157
Transparency  177, 190
Twips  229
Type Conversions  53

U
Unicode  21
Unpacked  97
UpdateCatalogName  215
updateRow  222
UpdateSchemaName  215
UpdateTableName  215
URL  214
URL Notation  90
UsePn  196
User  214

V
Variable declaration  

explicit  18
global  33
implicit  18
local  32
private  34
public domain  33

Variable names  17
Variable types  

Boolean values  27

Index   273



data fields  28
Date and time details  28
Numbers  22
strings  21
Variant  19

Variant  19
Vertical  209
VertJustify  153
VertOrient  129, 133

W
Wait  76
Wall  201
Weekday  63
Width  128, 133, 144, 157, 171

X
XAxis  203
XAxisTitle  203
XComponentLoader  

com.sun.star.frame  89
XEnumeration  

com.sun.star.container  87
XEnumerationAccess  

com.sun.star.container  87
XHelpGrid  203
XIndexAccess  

com.sun.star.container  86
XIndexContainer  

com.sun.star.container  86
XMainGrid  203
XML File Format  91
XMultiServiceFactory  

com.sun.star.lang  83
XNameAccess  

com.sun.star.container  84
XNameContainer  

com.sun.star.container  85
XRangeMovement  

com.sun.star.sheet  148
XStorable  

com.sun.star.frame  95

Y
Year  63

274   OpenOffice.org  Basic  Programmer's  Guide


