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ABSTRACT
Motivation: The continuing exponential accumulation of full genome
data, including full diploid human genomes, creates new challenges
not only for understanding genomic structure, function, and evolution,
but also for the storage, navigation, and privacy of genomic data. Here
we develop data structures and algorithms for the efficient storage of
genomic and other sequence data that may also facilitate querying
and protecting the data.
Results: The general idea is to encode only the differences
between a genome sequence and a reference sequence, using
absolute or relative coordinates for the location of the differences.
These locations and the corresponding differential variants can be
encoded into binary strings using various entropy coding methods,
from fixed codes such as Golomb and Elias codes, to variables
codes, such as Huffman codes. We demonstrate the approach and
various tradeoffs using highly variables human mitochondrial genome
sequences as a testbed. With only a partial level of optimization,
3,615 genome sequences occupying 56 Megabytes in GenBank
are compressed down to only 167 Kilobytes, achieving a 345-fold
compression rate, using the revised Cambridge Reference Sequence
as the reference sequence. Using the consensus sequence as the
reference sequence, the data can be stored using only 133 Kilobytes,
corresponding to a 433-fold level of compression, roughly a 23%
improvement. Extensions to nuclear genomes and high-throughput
sequencing data are discussed.
Availability: Data is publicly available from GenBank, the HapMap
Web site, and the MITOMAP database. Supplementary materials
with additional results, statistics, and software implementations
are available from http://mammag.web.uci.edu/bin/view/

Mitowiki/ProjectDNACompression.
Contact: pfbaldi@uci.com,mbrandon@uci.edu

1 INTRODUCTION
As high-throughput genome sequencing technologies continue to
improve, genome sequence data continue to accumulate at an
exponential pace. Not only do we already have the genome sequence
of thousands of viruses and bacteria and dozens of multicellular
organisms from plants to humans, but we are rapidly approaching
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the stage where sequencing individual diploid human genomes
will be economically affordable. The first diploid human genome
sequences were recently produced (Levy et al., 2007; Wheeler et al.,
2008; Wang et al., 2008) and a project to sequence 1,000 human
genomes in the next few years is under way (Kaiser, 2008). And
so is the race for the capability to sequence an individual human
genome for less than $1,000 within a few years (Service, 2006).
Millions of human genome sequences could be generated within a
decade or two.

In addition to the obvious challenges to understand the structure,
function, and evolution of genomes, modern high-throughput
sequencing methods also raise questions about how to efficiently
represent, store, transmit, query, and protect the privacy of sequence
information. These questions are further reinforced if one takes
into account also progress in synthetic biology and our ability to
bioengineer new sequences.

Currently, publicly available genomes are typically stored as flat
text files in GenBank, but this approach is unlikely to scale up in
many ways. The storage of the diploid genomes of all currently
living humans using this simple approach would take “GenBank”,
without counting headers or any additional annotations, on the order
of 36 × 1018 bytes, or 36M Terabytes, an amount difficult to store
or download over the Internet, even using standard compression
technologies (e.g gzip). And even with the progress that can be
expected with Moore’s law for storage and networking in the
coming years, it is likely that security and privacy issues will require
additional layers of protection around genomic data.

Here we develop data structures and algorithms to begin
addressing these problems. These data structures allow the
compression of genome and other sequences while facilitating
certain classes of sequence queries by bypassing classical sequence
alignments and dynamic programming algorithms. The approach
is demonstrated primarily using a benchmark dataset comprising
a few thousand of individual mitochondrial genome sequences.
Human mitochondrial sequences provide an excellent testbed for
developing and testing efficient data structures and algorithms
because, unlike nuclear genome sequences, many thousands of
fully sequenced mitochondrial genomes are already available, from
a diverse population of individuals. In addition, mitochondrial
genome sequences pose unique challenges due to their greater

c© Oxford University Press 2005. 1



Brandon et al

variability, as compared to SNP data, resulting from their higher
mutation rates.

2 GENERAL APPROACH
In the case of multiple genomes from the same species, associated
with “resequencing” technologies, the flat text file approach is
clearly wasteful since for the most part the sequences are identical.
Thus a simple approach is to store a reference sequence, and then for
each other sequence, encode only the differences (or “deltas”) with
respect to the original sequence. More precisely, consider first the
sequences AACGACTAGTAATTTG and CACGTCTAGTAATGTG
which are identical, except for a substitution in position 1 (A→C),
5 (A→T), and 14 (T→G). Each SNP can be encoded by a pair
(i, X), where i is an integer encoding the position and X represents
the value of the substitution relative to the reference. Thus given
the first sequence as a reference, the second one can be encoded
by the string “1C5T14G”, concatenating the coordinates of the
locations at which the variations occur and the SNP values at these
locations. Note that with this data representation, the questions
“Is this sequence different from the reference sequence at position
i? And if so how?” are easy to answer. Thus the same data
structure that facilitates compact representation, facilitates also
efficient information retrieval.

Other events such as deletions and insertions can easily be
accommodated in the same general scheme. For a deletion, imagine
using two integers (i, l) where the first integer denotes the position
where the deletion occurs, and the second integer represents the
length of the deletion. Likewise, for an insertion of length l, one can
use the encoding i, X1 . . . Xl to denote the insertion of X1 . . . Xl

at position i with respect to the reference sequence.
Although the basic idea is easy to understand, and not new, a

precise implementation requires addressing a number of important
technical issues. A first observation is that one can use local relative
addresses, i.e. intervals, rather than absolute addresses. Using
intervals, the above example“1C5T14G” becomes “0C4T9G”. With
intervals the dynamic range of the integers to be encoded may be
considerably smaller than with absolute addresses. The relatively
modest price to pay is that intervals must be added to recover
absolute coordinates.

A second observation is that if the positions at which variations
occur in the population are fixed and form a relatively small subset
of all possible positions, then additional savings may result by
focusing only on those positions. If in the same schematic example
as above, one knew that in the population substitutions can occur
only at positions 1, 5, and 14, then one could, for instance, encode
“1C5T14G” simply by “CTG”, at the cost of keeping an additional
table storing the coordinates where the variants occur, and using the
letter in the reference sequences at positions where the reference
sequence and the sequence under consideration are identical. This
approach could be suitable, for instance, for the SNP HapMap
data (HapMap Consortium, 2003, 2007), but may not be suitable in
other situations, where either the location of all possible variations
occurring in the population under consideration is not known in
advance, or the number of such locations is very large across the
population, but not very large in a typical sequence. This is the case,
for instance, of mitochondrial DNA which is characterized by much

higher mutation rates than nuclear DNA. Thus different situations
may lead to different variations of the basic idea.

An additional technical consideration is the choice of the
reference sequence. In particular, the reference sequence does not
need to be an actual genome but can, for instance, correspond
to a consensus genome. While the resequencing case is of
primary interest here due to the medical implication associated
with resequencing human genomes, the same general ideas can be
applied also to the case of de novo sequencing by using, for instance,
the genome of the closest available species as the reference genome.

However, no matter what the detailed scenario is, all applications
of the basic ideas hinge on a fundamental technical problem:
how encode integers, representing for instance absolute or relative
genomic addresses or read lengths, into binary strings. It is essential
to understand that the naive idea of converting integers to their
binary value, that is converting a “5” to“101” does not work at
all since with this encoding one does not know where an integer
ends and the next one begins. There are no spaces, tabs, or
commas available to separate consecutive integers in the ultimate
binary format of any computer where only the symbols 0 and 1
are available. Thus the encoding itself must somehow contain the
information necessary to uniquely determine the beginning and
end of each information item. In addition, the plain conversion
of integers to binary does not take into account any entropy
considerations. similarly, a general purpose compression scheme for
text data, such as Lempel- Ziv (gzip), is likely to be far from optimal
for genome and HTS data. In short, we are interested in binary
encoding schemes for sequences of integers that can be parsed
automatically and that, consistently with information theory, are
entropy efficient, in the sense that fewer bits are used to encode more
frequent events. The goal here is not to prescribe a single strategy
to achieve this end, but rather to present a family of related coding
strategies and some of the tradeoffs that would have to be optimized
in a practical application, and illustrate the approach using highly
variable mitochondrial DNA.

3 SPECIFIC ENCODING STRATEGIES
To begin with, we illustrate these issues here by considering how
the integer positions i are ultimately encoded into a binary string.
From Shannon’s entropy coding theory (McEliece, 1977; Cover
and Thomas, 1991), optimal encoding of these integers from a
compression standpoint depends on their distribution in order to
assign shorter binary codes to more probable symbols (integers). For
simplicity, we distinguish two broad classes of codes: fixed codes,
such as Golomb (Golomb, 1965) and Elias codes (Elias, 1975), and
variable codes, such as Huffman codes (Huffman, 1952). In a fixed
code, the integer i is always encoded in the same way, whereas in a
variable code the encoding changes.

3.1 Fixed Codes: Golomb and Golomb-Rice Codes
Both Golomb codes and Elias codes encode an integer j by
catenating two bit strings: a preamble p(j), that encodes j’s scale,
and a mantissa. Golomb codes were specifically developed to
encode stationary coin flips with p 6= 0.5. Thus they are known to be
optimal and asymptotically approach the Shannon limit if the data
is generated by random coin flips or, equivalently, if the distribution
over the integers is geometric, although they can be used for any
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other distribution. The more skewed the probability p is (towards 0
or 1) the greater the level of compression that can be achieved.

Golomb codes have one integer parameter m. Given m, any
positive integer j can be written using its quotient and remainder
modulo m as j = bj/mc + (j mod m). To encode j, the
Golomb code with parameter m (Table 1) encodes the quotient and
remainder by using:

• bj/mc 1-bits for the quotient;

• followed by a 0, as a delimiter (unary encoding of bj/mc);
• followed by the phased-in binary code for j mod m for the

remainder (described below).

The encoding of integers 0, . . . , m − 1 normally requires B =
dlog me bits. If m is not a power of two, then one can sometimes
use B − 1 bits. More specifically, in the “phased-in” approach:

• if i < 2B −m, then encode i in binary, using (B − 1) bits;

• if i ≥ 2B −m, then encode i by i + 2B −m in binary, using
B bits.

For instance, for m = 5, i = 2 is encoded as “10” using 2 (= B−1)
bits, and i = 4 is encode as “111” using 3 (= B) bits (see Table 1).
Thus the encoding of j requires in total bj/mc + 1 + blog mc or
bj/mc+1+dlog me bits (Table 1) and the codeword for the integer
j + m has one more bit than the codeword for the integer j. Unless
otherwise specified, all logarithms are taken to base 2. We use also
“[log m]” to denote “blog mc or dlog me”.

j m = 2 m = 3 m = 4 m = 5 m = 6

0 00 00 000 000 000
1 01 010 001 001 001
2 100 011 010 010 0100
3 101 100 011 0110 0101
4 1100 1010 1000 0111 0110
5 1101 1011 1001 1000 0111
6 11100 1100 1010 1001 1000
7 11101 11010 1011 1010 1001
8 1111100 11011 11000 10110 10100

Table 1. Golomb encoding of the integers j = 0 to 8, for different values
of the parameter m.

The entropy of the geometric distribution of the coin flip run-
lengths is given by (using q = 1− p):

H(geometric) = −
∞∑

j=0

qjp log(qjp) (1)

and provides the optimal Shannon coding lower bound on the
expected encoding length l per integer

E(l) ≈
∞∑

j=0

qjp (bj/mc+ 1 + [log m]) (2)

Number Encoding (k = 2) Number Encoding (k = 3)
0-3 0xx 0-7 0xxx
4-7 10xx 8-15 10xxx

8-11 110xx 16-31 110xxx
33 11111111001 33 11110001

Table 2. Golomb-Rice encoding of integers j = 0− 33 with k = 2 (m =
4) and k = 3 (m = 8). Integer j is encoded by concatenating bj/2kc 1-bits,
one 0-bit, and the k least significant bits of j.

Number Encoding
1 1
2-3 01x
4-7 001xx
8-15 0001xxx
16-31 00001xxxx

Table 3. Elias Gamma encoding. Each integer j is encoded by
concatenating blog jc 0’s with the binary value of j.

under the coin flip model. Thus the Golomb code approaches the
Shannon limit when qm = 0.5. In particular, this ensures that for
each integer j

− log P (j) = log(qjp) ≈ bj/mc+ 1 + [log m] (3)

where P (j) is the probability associated with the integer j.
Finally, Golomb-Rice codes are a particularly convenient sub-

family of Golomb codes, when m = 2k (Table 2). To encode j,
we concatenate bj/2kc 1-bits, one 0-bit, and the k least significant
bits of j. The length of the encoding of j is thus dj/2ke+k+1. The
decoding of Golomb-Rice codes is particularly simple, the position
of the 0-bit gives the value of the prefix to be followed by the next k
bits.

3.2 Elias Codes
In the Elias Gamma coding scheme, the preamble p(m) is a string
of zeroes of length blog jc, and the mantissa m(j) is the binary
encoding of j. More precisely, to encode the scale and value of j:

• write blog jc 0-bits;

• followed by the binary value of j beginning with its most
significant 1-bit.

The length of the encoding of j is 2blog jc + 1 (Table 3). The
decoding is obvious: first read n 0-bits until the first 1-bit is
encountered, then read n more bits to get the binary representation
of j.

Applying the relationship

− log P (j) ≈ 2blog jc+ 1 (4)

to the integer probabilities, shows that Elias Gamma encoding
asymptotically approaches the Shannon limit for P (j) ≈ Cj−2.
This is a power law relationship with exponent -2 and C is a
normalizing constant. Note that for both Golomb (Equation 3)
and Elias Gamma codes (Equation 4), several different consecutive
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integers can be encoded into a bit vector with the same length, hence
the relationships − log P (j) ≈ length(j) is only approximate with
respect to geometric or power-law distributions over the integers. To
be more precise, the optimal distribution associated with the Elias
Gamma code can be separated into the product of a probability
distribution over the length l given by P (l) = 2−l and a uniform
distribution over the integers having an encoding of length l given
by P (j|l) = 2−l+1.

More recently, new families of efficient fixed codes for integers
have been developed (Moffat and Stuiver, 2000; Moffat and Anh,
2006; Baldi et al., 2007; Hirschberg and Baldi, 2008), for instance
in the case of increasing or quasi increasing sequences of integers,
by encoding only the deltas of the preambles. For sequence data, the
absolute addresses are increasing, and the relative addresses could
be made quasi-increasing if one were to apply a fixed permutation
to all the sequences to be stored, at the cost of storing and using this
permutation (Baldi et al., 2007).

3.3 Decoding and Byte Arithmetic
While the degree of compression achieved is an important criteria,
the complexity and speed of decoding is also important in all
the applications to be considered. For all the encoding algorithms
described above, we have also described corresponding simple
and fast decoding algorithms. Direct implementations of the
decoding algorithms process the compressed representations bit-by-
bit; however, it is possible to implement even faster decoders, which
decode the compressed data byte-by- byte. These faster decoders
work by looking up information from pre-computed tables. These
tables are indexed by: (1) all possible bytes B (ranging from 0 to
255); and (2) a bit-index i (ranging from 0 to 7) which marks the
position of the decoder within the byte. These tables may store
quantities such as the binary value of byte B starting from bit i,
the number of bits turned on in byte B starting from bit i, and
the unary value of byte B starting from bit i. The exact quantities
stored depend on the details of a particular decoder implementation.
In practice, byte arithmetic considerably increases decoding speed,
sometimes approaching as much as an eight-fold improvement over
the corresponding bit-by-bit implementation. The exact value of the
speedup depends on several factors including the characteristic of
the data, the exact compression scheme, and the hardware used.

3.4 Variable Codes
In genomic applications, in general the integers may not have a
well defined distribution, in which case it is always possible to
use a general entropy encoding scheme, such as Huffman coding
(Huffman, 1952; McEliece, 1977; Cover and Thomas, 1991) which
essentially builds a prefix code by using a binary hierarchical
clustering algorithm starting from the events (integers) with the
lowest probability. While Huffman coding achieves compression
close to the entropy limit, the price to pay over fixed coding
schemes such as Golomb and Elias Gamma, or the more recent
codes mentioned above, is the storage of the Huffman table which
can be quite large in some applications. However this is a fixed cost
with respect to the database size, and therefore whether this cost is
acceptable or not depends on the specific application. Small gains in
compression over Huffman coding may be obtained using arithmetic
coding (Rissanen and Langdonr, 1979; Witten et al., 1987), but at a
non-trivial price in the complexity of computations.

4 RESULTS
4.1 Data Extraction
To demonstrate the general approach, 3,615 human mitochondrial
sequences were downloaded from a recent version of GenBank. We
focused on the sequences alone, ignoring any header and any other
exogenous information. We first use the the Revised Cambridge
Reference Sequence (rCRS) sequence (GenBank accession number:
AC 000021) as the reference sequence (Brandon et al., 2005;
Ruiz-Pesini et al., 2007). The reference sequence is 16,568 bp
long. Among the other sequences, 2,671 correspond to complete
genomes, while the remaining 944 correspond only to the coding
region sequence, which is about ∼ 1, 100 bp shorter than the full
genome sequence, and extends from position 577 to 16,023 of the
reference sequence. 80 sequences contained ambiguous symbols
which, for simplicity, were replaced by the corresponding value in
the reference sequence. This replacement is without much loss of
generality since ambiguous symbols could easily be accommodated
into the coding schemes, for instance as additional variation types.
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Fig. 1. Distribution of intervals between variations using a log rank-log
frequency plot. x-axis represents the logarithm of the rank associated with
decreasing interval frequencies. y axis represents the logarithm of the
corresponding counts.

4.2 General Statistics
There are 4,577 positions along the reference sequence where at
least one of the other sequence deviates from the reference. In
aggregate, there are 122,131 bp that deviate from the reference
sequence. Besides substitutions, the total number of insertion and
deletion events across all the sequences is 7,119, the most frequent
one being 1 bp insertions (4,615 occurrences), followed by 2 bp
deletions (901). Some well known variants, such as the “Asian-
specific 9 bp deletion” (Harihara et al., 1992; Thomas et al., 1998),
also occur frequently (255 occurrences). In total, there are 43
different kinds of variation events (see Tables 6 and 7). On average,
a given sequence deviates from the reference sequence in 33.8 bp
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Intervals Variants
Huffman Golomb Elias Gamma Huffman Golomb Elias Gamma

Cambridge 9.21 11.10 12.93 2.66 2.44 2.77
Consensus 9.75 12.03 13.86 2.44 2.59 2.97

Table 4. Comparison of the average bit cost of encoding intervals and events for Huffman, Golomb, and Elias Gamma encoding schemes using the revised
Cambridge Reference Sequence and the consensus sequence.
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Fig. 2. Simplified Haplotype classification used in Brandon et al. (2009).
rCRS = revised Cambridge Reference Sequence.

with a standard deviation of 13.43 bp. The average number of
substitutions (transition/transversions) per sequence is 30.69 bp.
The average number of insertions per sequence is 1.69 bp, the
average number of deletions is 1.37 bp.

The distribution of the raw intervals using the rCRS as the
reference sequence is represented in Figure 1 displaying the
logarithm of the counts versus the logarithm of the rank (in
decreasing order of frequency). Observed intervals vary from 0 to
14,997 bp, the most frequent one being an interval of 72 (2,579
occurrences) (see interpretation in next section), followed by 687
(2,418 occurrences), and followed by 5 (2,130 occurrences). Overall
this distribution is not strongly structured.

H+H G+G E+E
Cambridge 167 (345) 195 (295) 226 (254)
Consensus 133 (433) 159 (361) 183 (314)

Table 5. Total file size comparison using the rRCS and the consensus
sequence, with Huffman encoding for both intervals and variants (H+H),
or Golomb encoding for both interval and variants (G+G), or Elias Gamma
encoding for both interval and variants (E+E). Numbers are given in
Kilobytes (1024 × 8 bits). In comparison, the raw data takes 56 Megabytes
(57439.05 Kilobytes). Compression factor are given in parenthesis.

Table 6. Huffman encoding for the event types using the
revised Cambridge Reference Sequence.

variant count binary code

G 42839 11
C 24753 01
T 22345 00
A 21003 101
InsC 3980 1001
Del2bp 901 100011
Del1bp 757 100001
InsCC 360 1000100
InsT 313 1000001
Del9bp 255 1000000
InsA 222 10001011
InsCCC 34 1000101000
InsCCCC 30 10001010110
InsG 29 10001010100
InsCCCCC 16 100010101110
InsACA 15 100010101011
InsCCCCCC 12 100010100110
InsCCCCCCC 8 1000101010101
InsAC 6 1000101001011
InsCCT 5 1000101001010
Del6bp 4 10001010111100
Del8bp 4 10001010111101
InsCCCCCTCTA 3 10001010011111
Del3bp 3 10001010101001
InsGC 3 10001010011101
InsCCCCCCCC 3 10001010101000
InsTT 3 10001010011110
Del4bp 3 10001010011100
InsACAC 2 100010101111100
InsACACA 1 100010100100000
InsCCCCCCCCC 1 100010100100111
InsTA 1 1000101011111110
InsGA 1 1000101011111101
InsGG 1 1000101011111100
InsCA 1 1000101011111011
InsAG 1 1000101011111010
InsGATCACAG 1 100010100100011
Del10bp 1 100010100100010
InsTCTCTGTTCTTTCAT 1 100010100100001
InsACACAC 1 100010100100101
InsAGAA 1 100010100100100
InsCACA 1 1000101011111111
Del5bp 1 100010100100110

Deletions (Del) are followed by their length. Insertions (Ins) by their
content.
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Table 7. Huffman encoding for the event types using the
consensus sequence.

variant count binary code

C 26164 11
A 19576 01
G 18002 00
T 16528 101
InsC 3980 1001
Del2bp 901 100011
Del1bp 757 100001
InsCC 360 1000100
InsT 313 1000001
Del9bp 255 1000000
InsA 222 10001011
InsCCC 34 1000101000
InsCCCC 30 10001010110
InsG 29 10001010100
InsCCCCC 16 100010101110
InsACA 15 100010101011
InsCCCCCC 12 100010100110
InsCCCCCCC 8 1000101010101
InsAC 6 1000101001011
InsCCT 5 1000101001010
Del6bp 4 10001010111100
Del8bp 4 10001010111101
InsCCCCCTCTA 3 10001010011111
Del3bp 3 10001010101001
InsGC 3 10001010011101
InsCCCCCCCC 3 10001010101000
InsTT 3 10001010011110
Del4bp 3 10001010011100
InsACAC 2 100010101111100
InsACACA 1 100010100100000
InsCCCCCCCCC 1 100010100100111
InsTA 1 1000101011111110
InsGA 1 1000101011111101
InsGG 1 1000101011111100
InsCA 1 1000101011111011
InsAG 1 1000101011111010
InsGATCACAG 1 100010100100011
Del10bp 1 100010100100010
InsTCTCTGTTCTTTCAT 1 100010100100001
InsACACAC 1 100010100100101
InsAGAA 1 100010100100100
InsCACA 1 1000101011111111
Del5bp 1 100010100100110

Deletions (Del) are followed by their length. Insertions (Ins) by their
content.

4.3 Changing the Reference Sequence
There are no particular reasons, beyond standardization and
tradition, for using rRCS as the reference sequence. Furthermore,
purely from a compression standpoint, the rCRS may not be optimal
due to biases in data. To illustrate this point we computed the
haplotype distribution of the data using the simplified haplotype
classification described in Figure 2 (see also (Brandon et al., 2009;
Mishmar et al., 2003)). We find the following skewed distribution:
11.2% African (405 sequences), 26.3% Asian (950 sequences), and

62.5% EurAsian (2,260 sequences). In addition, it is well known
that the original Cambridge Reference sequence contains a number
of errors and has been revised over the years (Anderson et al., 1981;
Andrews et al., 1999) (The revisions to the original sequence are
described at: http://www.mitomap.org/mitoseq.html). This alone,
for instance, explains why the interval 72 is so frequent with respect
to the rCRS: the rCRS sequence has a G in the corresponding
position, which is a very rare variant, most likely an error.

Thus it is clear that other reference sequences could be used
to improve compression rates and minimize the total number of
variants. Furthermore, the reference sequence does not need to
be a sequence from an actual individual, but could be designed
using purely statistical considerations. Note that the design of the
reference sequence impacts not only the variants to be recorded, but
also the intervals, and therefore it must also take into consideration
any constraints a particular implementation may place on the
intervals and their encodings. A reasonable choice adopted here to
try to further improve the compression rate, is to use the consensus
sequence, derived by computing the consensus at each position, as
the reference sequence.

Using the consensus sequence, observed intervals vary from 0
to 11,717 bp, the most frequent one being an interval of 5 (2,104
occurrences), followed by 1 (1,251 occurrences), and followed by
259 (895 occurrences).

4.4 Encoding and Compression
We explored and compared different encoding schemes using both
fixed and variable codes. The main sample of results is given in
Tables 4 and 5 giving the average number of bits required to encode
an interval or a variant, using Huffman, Golomb, or Elias Gamma
codes, with the rCRS or the consensus sequence, as well as the
total number of bits required to encode the entire data. The Huffman
coding tables for the events are given in Tables 6 and 7 for the rCRS
and consensus sequence respectively.

As can be seen in Table 5, Huffman coding achieves slightly better
compression rates than Golomb or Elias Gamma coding, with a table
storage cost that may be manageable in this case. The raw data
takes 56 Megabyte (58,817,584 bytes) of space. By concatenating
the Huffman codes for the intervals and the variants (H+H), the
encoded data requires only 167 Kilobytes of space, corresponding to
a 345-fold level of compression. Using, for instance, Golomb codes
for both the intervals and the variants (G+G) requires instead 195
Kilobytes. The choice of the reference sequence has a noticeable
effect. Although the average number of bits required to encode an
interval or a variant is slightly higher for the consensus sequence
(Table 4), this is compensated by a considerable decrease in the
total number of variants to be encoded. This is true here even with a
consensus sequence that differs from the rRCS sequence by only 11
nucleotides. As shown in Table 5, the same encoding method based
on using two Huffman codes (H+H), applied with the consensus
sequence, requires only 133 Kilobytes to store the entire data. This
corresponds to a 433-fold level of compression, roughly a 23%
improvement.

5 DISCUSSION
A simple but general data structure and data encoding approach
has been developed for the efficient storage of genomic data.
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Encoding DataSet 1 DataSet 2 DataSet 3

Raw Sequence 133,366,560 353,182,128 8,869,613,600
Flat File 75,525,168 185,536,864 8,396,646,344

Elias Gamma Absolute 358,402 (210.73) 79,281,140 (2.34) 1,373,892,116 (6.11)
Elias Gamma Relative 185,542 (407.05) 27,741,238 (6.69) 340,764,564 (24.64)

Monotone Value (MOV) 169,664 (445.15) 39,528,754 (4.69) 834,672,652 (10.06)

Table 8. Compression of the read addresses information from three HTS experiments (see text). The size in bits for the raw sequence data, the corresponding
flat text file format for the corresponding addresses, and the compressed files for different compression algorithms. Elias Gamma coding is applied both to the
absolute and relative addresses. Compression factors with respect to the flat text file format are given in parentheses, with top compression factors in bold.
MOV is a coding algorithm specifically designed for increasing sequences of integers described in Baldi et al. (2007).

The approach specifically leverages homology between sequences
and is different from general compression algorithms for text,
or compression algorithms for single genome data (Williams and
Zobel, 1997; Chen et al., 2002; Behzadi and Fessant, 2005). The
approach has been demonstrated on the mitochondrial genomes,
where it leads to 2-3 orders of magnitude improvement in data
storage. From these compact representations, full sequences can
be recovered rapidly using the reference sequence. Furthermore,
queries regarding the existence and nature of variants at particular
coordinate positions, such as those arising in a variety of
applications from medicine to forensics, can be answered
efficiently. Additional encryption methods may be applied to these
representations to protect the security of both the genomic data and
the queries.

The approach has been used for lossless compression, however it
could be used also in lossy compression, for instance by ignoring
variants that are not medically relevant. The approach is also
applicable to other kinds of sequences, such as RNA or protein
sequences. While for demonstration purposes we have used a single
reference sequence, it is clear that one could cluster the data and use
different reference sequences for different subgroups. In the case of
mitochondria genomes, for instance, Figure 2 would suggest using
at least three different reference sequences. Whether the gain in
compression that can be expected for each subgroup, akin to the
gain achieved by going from the rCRS to the consensus sequence, is
worth the cost of having multiple reference sequences rather than a
single one, cannot be answered in generality and depends on the
details of a particular application, the number of genomes to be
stored coming from each group, and so forth. For future work, the
same idea of multiple reference sequences can be extended beyond
the storage of genomes within a given species, to the storage of
genomes from multiple species by using a phylogenetic hierarchy
of reference sequences.

Finally, the approach can be extended to human nuclear
genomes and to high-throughput sequencing (HTS) from different
technologies and different kinds of experiments. For human SNP
variation, data and statistics are readily available (Hinds et al.,
2005; Goldstein and Cavalleri, 2005; HapMap Consortium, 2007).
A comprehensive list of human SNPs is available from the
dbSNP database maintained by NCBI. The current release (version
129) contains about 15 million SNPs. This data can readily be
compressed using the techniques described here and additional
gains in compression can be achieved by storing separately a fixed
table recording the location of all the SNPs and leveraging the

skewed distribution of some of the SNP variants. In preliminary
experiments, we have achieved compression factors of over 1,000
on the raw HapMap sequence data. Although SNPs account for
most of genetic variation events between individuals, a much
larger fraction of the genome (in terms of the total number of
bases) is involved in larger structural variation events, such as
copy number variations (CNV). While there have been studies
attempting to derive a preliminary assessment of large-scale
genomic complexity and variation (Feschotte and Pritham, 2007;
Tuzun et al., 2005), statistics on the frequencies and location of
these more complex structural variations in the human genome are
still at an earlier stage of development. For instance, comparative
analysis of the single diploid genome described in (Levy et al.,
2007) “revealed more than 4.1 million DNA variants, encompassing
12.3 Mb. These variants (of which 1,288,319 were novel) included
3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block
substitutions (2206 bp), 292,102 heterozygous insertion/deletion
events (indels)(1571 bp), 559,473 homozygous indels (182,711 bp),
90 inversions, as well as numerous segmental duplications and copy
number variation regions. Non-SNP DNA variation accounts for
22% of all events identified in the donor, however they involve
74% of all variant bases. This suggests an important role for non-
SNP genetic alterations in defining the diploid genome structure.”
A better statistical understanding of the coding constraints posed
by these complex events, and how to encode them, should become
possible as more full human genome sequences become available in
the coming years (www.1000genomes.org).

Regarding HTS data, for illustration purposes here we consider
the problem of storing the genomic addresses of the reads from three
HTS datasets associated with different HTS technologies. The first
data set is obtained from the laboratory of Dr. S. Sandmeyer at UCI
and comes from an experiment aimed at mapping retrotransposon
Ty3 insertion sites in the yeast genome. It consists of 833,541
sequence reads, all of length 19 bp. The second data set comes from
a chromatin immunoprecipitation assay (ChIP-Seq) used to map the
in vivo binding site locations of the neuron-restrictive silencer factor
(NRSF) in humans (Johnson et al., 2007). It consists of 1,697,991
sequence reads, all of length 25 bp and mapped to the most recent
human genome sequence (hg18). The third data set corresponds to
a full diploid human genome sequencing experiment for an Asian
individual (Wang et al., 2008). This is a very large data set with
enough reads to provide 36-fold average coverage, and we utilize
the existing mapping of the reads provided by the YH database
(Li et al., 2009) to the human reference genome. For illustrative

7



Brandon et al

purposes, we report only the results corresponding to the reads
associated with chromosome 22. For chromosome 22, there are
31,118,532 reads that vary in length from 30 to 40 bp for a total
of 1,108,701,700 bp of sequence data. While complete details of
these experiments will be reported elsewhere, Table 8 shows the
resulting compression factors which are again in the range of one
to three orders of magnitude, depending on the statistical properties
of the data sets. The same techniques described here can readily be
applied to storing also the length of the reads, the content of the
reads, where they differ from the reference genome, their quality,
and so forth. Statistical properties of the reads and the underlying
HTS technologies, e.g increasing error rates towards the end of
the read, can also be exploited to achieve efficient compression.
Thus the data structures and compression algorithms described here
provide a framework for the management of HTS and genomic data
that can be flexibly applied in different environments.
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